Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Stress ; 26(1): 2240909, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37489893

RESUMO

School burnout is a serious concern, as it impairs students' health and academic success. According to the Conservation of Resources Theory, burnout results from the depletion of personal coping resources and can be counteracted by supportive social relationships. However, it is not yet clear how students' relatedness with their peers is linked to their burnout. Next to students' self-reported fatigue, biomarkers such as telomere length (TL), which presents an indicator of aging, complement stress research. To identify school-related factors that may prevent students from experiencing burnout and to link TL to students' self-reported burnout, the current study investigated how relatedness with peers as well as TL at the beginning of the school year explained students' burnout at the end of the school year. The sample included 78 students (Mage = 13.7 ± 0.7 years; 48% girls). Results of multilevel analysis in Mplus indicate that, over the school year, students with higher TL and those who experienced relatedness with their peers reported lower levels of burnout. Moreover, students who felt related to their peers exhibited a longer TL. The study implies that students' relatedness with their peers may be a promising setscrew to prevent students' burnout and support their physical health. This is one of the first studies to link TL with school-related variables such as burnout and relatedness to peers in a non-clinical student sample, providing a baseline for interventions and future interdisciplinary studies in the field of education and stress.


Assuntos
Esgotamento Psicológico , Estudantes , Feminino , Humanos , Masculino , Esgotamento Psicológico/genética , Telômero/genética , Adolescente , Relações Interpessoais , Grupo Associado
2.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299170

RESUMO

Previous research has shown that a perinatal obesogenic, high-fat diet (HFD) is able to exacerbate ozone-induced adverse effects on lung function, injury, and inflammation in offspring, and it has been suggested that mitochondrial dysfunction is implicated herein. The aim of this study was to investigate whether a perinatal obesogenic HFD affects ozone-induced changes in offspring pulmonary oxidant status and the molecular control of mitochondrial function. For this purpose, female Long-Evans rats were fed a control diet or HFD before and during gestation, and during lactation, after which the offspring were acutely exposed to filtered air or ozone at a young-adult age (forty days). Directly following this exposure, the offspring lungs were examined for markers related to oxidative stress; oxidative phosphorylation; and mitochondrial fusion, fission, biogenesis, and mitophagy. Acute ozone exposure significantly increased pulmonary oxidant status and upregulated the molecular machinery that controls receptor-mediated mitophagy. In female offspring, a perinatal HFD exacerbated these responses, whereas in male offspring, responses were similar for both diet groups. The expression of the genes and proteins involved in oxidative phosphorylation and mitochondrial biogenesis, fusion, and fission was not affected by ozone exposure or perinatal HFD. These findings suggest that a perinatal HFD influences ozone-induced responses on pulmonary oxidant status and the molecular control of mitophagy in female rat offspring.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Pulmão/patologia , Mitocôndrias/patologia , Mitofagia , Oxidantes/metabolismo , Ozônio/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Animais Recém-Nascidos , Feminino , Perfilação da Expressão Gênica , Pulmão/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Long-Evans
3.
Brain Behav ; 12(9): e2751, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36037299

RESUMO

BACKGROUND: In the present study, we investigated the association between sensory processing sensitivity (SPS) and telomere length (TL), which is considered a biomarker of cellular aging. SPS is an individual characteristic describing increased perception and procession of inner or outer stimuli, and is positively related to self-perceived stress. METHODS: We recruited 82 healthy adolescents aged 13-16 from secondary schools in Germany. SPS was measured with the Highly Sensitive Person Scale, and TL was determined by a multiplex quantitative PCR method. RESULTS: Our results show that students with higher values of SPS are likely to have shorter telomeres (ß = 0.337, p = .001), when adjusting for sex, socioeconomic status, age, and body mass index. These findings are also independent of the negative impact of stress students might have perceived shortly before data collection. CONCLUSIONS: Our analysis suggests that students who struggle with low sensory threshold are likely to have shorter telomeres.


Assuntos
Encurtamento do Telômero , Telômero , Adolescente , Biomarcadores , Índice de Massa Corporal , Humanos , Percepção
4.
Cells ; 11(21)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36359877

RESUMO

Chronic obstructive pulmonary disease (COPD) is a devastating lung disease primarily caused by exposure to cigarette smoke (CS). During the pyrolysis and combustion of tobacco, reactive aldehydes such as acetaldehyde, acrolein, and formaldehyde are formed, which are known to be involved in respiratory toxicity. Although CS-induced mitochondrial dysfunction has been implicated in the pathophysiology of COPD, the role of aldehydes therein is incompletely understood. To investigate this, we used a physiologically relevant in vitro exposure model of differentiated human primary bronchial epithelial cells (PBEC) exposed to CS (one cigarette) or a mixture of acetaldehyde, acrolein, and formaldehyde (at relevant concentrations of one cigarette) or air, in a continuous flow system using a puff-like exposure protocol. Exposure of PBEC to CS resulted in elevated IL-8 cytokine and mRNA levels, increased abundance of constituents associated with autophagy, decreased protein levels of molecules associated with the mitophagy machinery, and alterations in the abundance of regulators of mitochondrial biogenesis. Furthermore, decreased transcript levels of basal epithelial cell marker KRT5 were reported after CS exposure. Only parts of these changes were replicated in PBEC upon exposure to a combination of acetaldehyde, acrolein, and formaldehyde. More specifically, aldehydes decreased MAP1LC3A mRNA (autophagy) and BNIP3 protein (mitophagy) and increased ESRRA protein (mitochondrial biogenesis). These data suggest that other compounds in addition to aldehydes in CS contribute to CS-induced dysregulation of constituents controlling mitochondrial content and function in airway epithelial cells.


Assuntos
Aldeídos , Doença Pulmonar Obstrutiva Crônica , Humanos , Aldeídos/metabolismo , Acroleína/toxicidade , Acroleína/metabolismo , Células Epiteliais/metabolismo , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Acetaldeído/toxicidade , Acetaldeído/metabolismo , Nicotiana , Formaldeído , RNA Mensageiro/metabolismo , Fumar
5.
Mutagenesis ; 23(6): 491-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18711122

RESUMO

Although exposure to polycyclic aromatic hydrocarbons (PAHs) occurs mostly through mixtures, hazard and risk assessment are mostly based on the effects caused by individual compounds. The objective of the current study was to investigate whether interactions between PAHs occur, focusing on gene expression (as measured by cDNA microarrays) and DNA adduct formation. The effects of benzo[a]pyrene or dibenzo[a,h]anthracene (DB[a,h]A) alone and in binary mixtures with another PAH (DB[a,h]A, benzo[b]fluoranthene, fluoranthene or dibenzo[a,l]pyrene) were investigated using precision-cut rat liver slices. All compounds significantly modulated the expression of several genes, but overlap between genes affected by the mixture and by the individual compounds was relatively small. All mixtures showed an antagonistic response on total gene expression profiles. Moreover, at the level of individual genes, mostly antagonism was evident, with additivity and synergism observed for only a few genes. As far as DNA adduct formation is concerned, the binary mixtures generally caused antagonism. The effects in liver slices suggest a lower carcinogenic potency of PAH mixtures than estimated based on additivity of individual compounds.


Assuntos
Carcinógenos/toxicidade , Adutos de DNA/biossíntese , Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Fígado/efeitos dos fármacos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Wistar
6.
Genes (Basel) ; 8(2)2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28218666

RESUMO

Base excision repair (BER) may become less effective with ageing resulting in accumulation of DNA lesions, genome instability and altered gene expression that contribute to age-related degenerative diseases. The brain is particularly vulnerable to the accumulation of DNA lesions; hence, proper functioning of DNA repair mechanisms is important for neuronal survival. Although the mechanism of age-related decline in DNA repair capacity is unknown, growing evidence suggests that epigenetic events (e.g., DNA methylation) contribute to the ageing process and may be functionally important through the regulation of the expression of DNA repair genes. We hypothesize that epigenetic mechanisms are involved in mediating the age-related decline in BER in the brain. Brains from male mice were isolated at 3-32 months of age. Pyrosequencing analyses revealed significantly increased Ogg1 methylation with ageing, which correlated inversely with Ogg1 expression. The reduced Ogg1 expression correlated with enhanced expression of methyl-CpG binding protein 2 and ten-eleven translocation enzyme 2. A significant inverse correlation between Neil1 methylation at CpG-site2 and expression was also observed. BER activity was significantly reduced and associated with increased 8-oxo-7,8-dihydro-2'-deoxyguanosine levels. These data indicate that Ogg1 and Neil1 expression can be epigenetically regulated, which may mediate the effects of ageing on DNA repair in the brain.

7.
Reprod Toxicol ; 63: 169-73, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27318254

RESUMO

A balanced redox homeostasis in the testis is essential for genetic integrity of sperm. Reactive oxygen species can disturb this balance by oxidation of glutathione, which is regenerated using NADPH, formed by glucose-6-phosphate dehydrogenase (G6PDH). G6PDH is regulated by the Ataxia Telangiectasia Mutated (Atm) protein. Therefore, we studied the redox status and DNA damage in testes and sperm of mice that carried a deletion in Atm. The redox status in heterozygote mice, reflected by glutathione levels and antioxidant capacity, was lower than in wild type mice, and in homozygotes the redox status was even lower. The redox status correlated with oxidative DNA damage that was highest in mice that carried Atm deletions. Surprisingly, G6PDH activity was highest in homozygotes carrying the deletion. These data indicate that defective Atm reduces the redox homeostasis of the testis and genetic integrity of sperm by regulating glutathione levels independently from G6PDH activity.


Assuntos
Glutationa/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Ensaio Cometa , Dano ao DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Genótipo , Glucosefosfato Desidrogenase/metabolismo , Masculino , Camundongos , Mutação , Oxirredução , Estresse Oxidativo
8.
Environ Mol Mutagen ; 46(2): 71-80, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15880737

RESUMO

Exposure to ambient particulate matter (PM) has been linked to several adverse health effects. Since vehicular traffic is a PM source of growing importance, we sampled total suspended particulate (TSP), PM(10), and PM(2.5) at six urban locations with pronounced differences in traffic intensity. The mutagenicity, DNA-adduct formation, and induction of oxidative DNA damage by the samples were studied as genotoxicological parameters, in relation to polycyclic aromatic hydrocarbon (PAH) levels, elemental composition, and radical-generating capacity (RGC) as chemical characteristics. We found pronounced differences in the genotoxicity and chemical characteristics of PM from the various locations, although we could not establish a correlation between traffic intensity and any of these characteristics for any of the PM size fractions. Therefore, the differences between locations may be due to local sources of PM, other than traffic. The concentration of total (carcinogenic) PAHs correlated positively with RGC, direct and S9-mediated mutagenicity, as well as the induction of DNA adducts and oxidative DNA damage. The interaction between total PAHs and transition metals correlated positively with DNA-adduct formation, particularly from the PM(2.5) fraction. RGC was not associated with one specific PM size fraction, but mutagenicity and DNA reactivity after metabolic activation were relatively high in PM(10) and PM(2.5), when compared with TSP. We conclude that the toxicological characteristics of urban PM samples show pronounced differences, even when PM concentrations at the sample sites are comparable. This implies that emission reduction strategies that take chemical and toxicological characteristics of PM into account may be useful for reducing the health risks associated with PM exposure.


Assuntos
Poluentes Atmosféricos/química , Poluentes Atmosféricos/toxicidade , Carcinógenos Ambientais/química , Carcinógenos Ambientais/toxicidade , Gasolina/toxicidade , Mutagênicos , Animais , Fenômenos Químicos , Físico-Química , Adutos de DNA/química , Veículos Automotores , Testes de Mutagenicidade/estatística & dados numéricos , Países Baixos , Estresse Oxidativo , Tamanho da Partícula
9.
Cancer Epidemiol Biomarkers Prev ; 13(5): 828-33, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15159316

RESUMO

The myeloperoxidase (MPO) -463G-->A genetic polymorphism is associated with a reduced risk for lung cancer, but the underlying mechanism is not yet elucidated. Therefore, the impact of this polymorphism on MPO activity and lipophilic DNA adducts was studied in respectively bronchoalveolar lavage (BAL) fluid and cells, from 106 smoking Caucasian lung patients. MPO activity was determined spectrophotometrically, aromatic DNA adducts by (32)P-postlabeling and MPO genotypes by RFLP analysis. Frequencies of MPO -463AA (13%), MPO -463AG (36%), and MPO -463GG (51%) were in line with earlier observations. MPO activity/neutrophil was lower in MPO -463AA (median 0.04 pU/cell) than in MPO -463AG (median 0.07 pU/cell) and MPO -463GG (median 0.14 pU/cell; P = 0.059) individuals. DNA adducts in BAL cells were measured in 11 MPO -463AA subjects and equal numbers of MPO -463AG and MPO -463GG subjects matched for smoking, age, gender, and clinical diagnosis. DNA adduct levels in MPO -463AA individuals (median 0.62 adducts/10(8) nucleotides) were lower than in MPO -463AG (median 1.51 adducts/10(8) nucleotides) and MPO -463GG (median 3.26 adducts/10(8) nucleotides; P = 0.003) subjects. Overall, no significant correlation was observed between amount of inhaled tar/day and DNA adduct levels. However, correlations improved considerably on grouping according to the MPO genotype; MPO -463AA subjects were the least responsive (R(2) = 0.73, slope = 0.4, P = 0.01) followed by MPO -463AG subjects (R(2) = 0.70, slope = 1.3, P = 0.01) and MPO -463GG patients (R(2) = 0.67, slope = 2.8, P = 0.02). These data demonstrate that MPO -463AA/AG genotypes are associated with (a) reduced MPO activity in BAL fluid and (b) reduced smoking-related DNA adduct levels in BAL cells in a gene-dose manner. These data provide a plausible biological explanation for the reduced risk for lung cancer as observed in MPO -463AA/AG compared with MPO -463GG subjects.


Assuntos
Adutos de DNA/análise , Peroxidase/metabolismo , Polimorfismo Genético , Fumar/genética , Adulto , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/citologia , Estudos de Coortes , Adutos de DNA/genética , Feminino , Genótipo , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Peroxidase/genética , Polimorfismo de Fragmento de Restrição , Probabilidade , Medição de Risco , Sensibilidade e Especificidade , Fumar/fisiopatologia
10.
Mutat Res ; 552(1-2): 219-33, 2004 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-15288554

RESUMO

The applicability of terrestrial black slugs Arion ater (Mollusca, Gastropoda) was studied for biomonitoring environmental exposure to polycyclic aromatic hydrocarbons (PAHs). In laboratory experiments, slugs were orally exposed to benzo[a]pyrene (BaP) for a short term (3 days) or a long term (119 days) period. Test animals were collected in the field, or were reared under laboratory conditions to ensure that they had no history of PAH-exposure. Benzo[a]pyrene hydroxylase (BPH) activity was measured in the digestive gland as a biomarker for BaP exposure. Bulky DNA adduct formation in kidney was measured as an effect biomarker for BaP bioactivation into DNA-binding metabolites. Although success of clutching was relatively low (5 out of 18 slugs produced egg packages), sufficient number of slugs were obtained to perform exposure experiments due to high hatching (89%) and survival rates (79%). After a short exposure to a relatively high BaP doses of 20 and 200 microg/g fresh feed, a dose-dependent and significant increase of BPH activity and bulky DNA adduct levels could be demonstrated in A. ater. Induction factors were low (two times control level), but optimization of the test conditions yielded a higher BPH induction factor of 4.8 times control level. BPH activity and bulky DNA adduct levels, however, did not increase after a long-term exposure to environmentally relevant BaP doses (upto 0.25 microg/g fresh feed). Based on this lack of response after realistic exposure it is concluded that A. ater is not sensitive to BaP exposure and, therefore, not suitable for monitoring environmental exposure to PAHs.


Assuntos
Benzo(a)pireno/toxicidade , Adutos de DNA/metabolismo , Monitoramento Ambiental/métodos , Moluscos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Benzopireno Hidroxilase/análise , Biomarcadores , Biotransformação , Relação Dose-Resposta a Droga , Exposição Ambiental , Rim/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA