RESUMO
We demonstrate the real-time monitoring of the growth of amyloid-protein aggregates in a semi-rigid gel environment constructed from a 5% w/v gelatin solution. The kinetics of amyloid fibril growth from reduced and carboxy-methylated κ-casein occurring in the gel medium was contrasted against that obtained in a regular solution assay. Aggregation kinetics were recorded using Thioflavin T fluorescence. Transmission electron microscopy was used to confirm the aggregates' existence and morphology. The current demonstration of controlled amyloid growth in a gel environment represents the first step towards development of an experimental model for investigating the role of spatial and medium factors in the kinetics of aggregation-based proteopathies.
Assuntos
Amiloide/química , Caseínas/química , Gelatina/química , Agregação Patológica de Proteínas , Tiazóis/química , Amiloide/ultraestrutura , Animais , Benzotiazóis , Géis , Humanos , CinéticaRESUMO
Detection of amyloid growth is commonly carried out by measurement of solution turbidity, a low-cost assay procedure based on the intrinsic light scattering properties of the protein aggregate. Here, we review the biophysical chemistry associated with the turbidimetric assay methodology, exploring the reviewed literature using a series of pedagogical kinetic simulations. In turn, these simulations are used to interrogate the literature concerned with in vitro drug screening and the assessment of amyloid aggregation mechanisms.