RESUMO
The DNA damage binding protein 1 (DDB1) is an essential component of protein complexes involved in DNA damage repair and the ubiquitin-proteasome system (UPS) for protein degradation. As an adaptor protein specific to Cullin-RING E3 ligases, DDB1 binds different receptors that poise protein substrates for ubiquitination and subsequent degradation by the 26S proteasome. Examples of DDB1-binding protein receptors are Cereblon (CRBN) and the WD-repeat containing DDB1- and CUL4-associated factors (DCAFs). Cognate substrates of CRBN and DCAFs are involved in cancer-related cellular processes or are mimicked by viruses to reprogram E3 ligases for the ubiquitination of antiviral host factors. Thus, disrupting interactions of DDB1 with receptor proteins might be an effective strategy for anticancer and antiviral drug discovery. Here, we developed fluorescence polarization (FP)-based peptide displacement assays that utilize full-length DDB1 and fluorescein isothiocyanate (FITC)-labeled peptide probes derived from the specific binding motifs of DDB1 interactors. A general FP-based assay condition applicable to diverse peptide probes was determined and optimized. Mutagenesis and biophysical analyses were then employed to identify the most suitable peptide probe. The FITC-DCAF15 L49A peptide binds DDB1 with a dissociation constant of 68 nM and can be displaced competitively by unlabeled peptides at sub-µM to low nM concentrations. These peptide displacement assays can be used to screen small molecule libraries to identify novel modulators that could specifically antagonize DDB1 interactions toward development of antiviral and cancer therapeutics.
Assuntos
Proteínas de Ligação a DNA , Peptídeos , Humanos , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Polarização de Fluorescência/métodos , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismoRESUMO
ClpP is a highly conserved serine protease that is a critical enzyme in maintaining protein homeostasis and is an important drug target in pathogenic bacteria and various cancers. In its functional form, ClpP is a self-compartmentalizing protease composed of two stacked heptameric rings that allow protein degradation to occur within the catalytic chamber. ATPase chaperones such as ClpX and ClpA are hexameric ATPases that form larger complexes with ClpP and are responsible for the selection and unfolding of protein substrates prior to their degradation by ClpP. Although individual structures of ClpP and ATPase chaperones have offered mechanistic insights into their function and regulation, their structures together as a complex have only been recently determined to high resolution. Here, we discuss the cryoelectron microscopy structures of ClpP-ATPase complexes and describe findings previously inaccessible from individual Clp structures, including how a hexameric ATPase and a tetradecameric ClpP protease work together in a functional complex. We then discuss the consensus mechanism for substrate unfolding and translocation derived from these structures, consider alternative mechanisms, and present their strengths and limitations. Finally, new insights into the allosteric control of ClpP gained from studies using small molecules and gain or loss-of-function mutations are explored. Overall, this review aims to underscore the multilayered regulation of ClpP that may present novel ideas for structure-based drug design.
Assuntos
Endopeptidase Clp , Chaperonas Moleculares , Adenosina Trifosfatases/metabolismo , Microscopia Crioeletrônica , Desenho de Fármacos , Endopeptidase Clp/química , Endopeptidase Clp/genética , Endopeptidase Clp/ultraestrutura , Chaperonas Moleculares/metabolismoRESUMO
Protein homeostasis is critically important for cell viability. Key to this process is the refolding of misfolded or aggregated proteins by molecular chaperones or, alternatively, their degradation by proteases. In most prokaryotes and in chloroplasts and mitochondria, protein degradation is performed by the caseinolytic protease ClpP, a tetradecamer barrel-like proteolytic complex. Dysregulating ClpP function has shown promise in fighting antibiotic resistance and as a potential therapy for acute myeloid leukemia. Here we use methyl-transverse relaxation-optimized spectroscopy (TROSY)-based NMR, cryo-EM, biochemical assays, and molecular dynamics simulations to characterize the structural dynamics of ClpP from Staphylococcus aureus (SaClpP) in wild-type and mutant forms in an effort to discover conformational hotspots that regulate its function. Wild-type SaClpP was found exclusively in the active extended form, with the N-terminal domains of its component protomers in predominantly ß-hairpin conformations that are less well-defined than other regions of the protein. A hydrophobic site was identified that, upon mutation, leads to unfolding of the N-terminal domains, loss of SaClpP activity, and formation of a previously unobserved split-ring conformation with a pair of 20-Å-wide pores in the side of the complex. The extended form of the structure and partial activity can be restored via binding of ADEP small-molecule activators. The observed structural plasticity of the N-terminal gates is shown to be a conserved feature through studies of Escherichia coli and Neisseria meningitidis ClpP, suggesting a potential avenue for the development of molecules to allosterically modulate the function of ClpP.
Assuntos
Proteínas de Bactérias/química , Endopeptidase Clp/química , Simulação de Dinâmica Molecular , Staphylococcus aureus/enzimologia , Interações Hidrofóbicas e Hidrofílicas , Domínios ProteicosRESUMO
YcjR from Escherichia coli K-12 MG1655 catalyzes the manganese-dependent reversible epimerization of 3-keto-α-d-gulosides to the corresponding 3-keto-α-d-glucosides as a part of a proposed catabolic pathway for the transformation of d-gulosides to d-glucosides. The three-dimensional structure of the manganese-bound enzyme was determined by X-ray crystallography. The divalent manganese ion is coordinated to the enzyme by ligation to Glu-146, Asp-179, His-205, and Glu-240. When either of the two active site glutamate residues is mutated to glutamine, the enzyme loses all catalytic activity for the epimerization of α-methyl-3-keto-d-glucoside at C4. However, the E240Q mutant can catalyze hydrogen-deuterium exchange of the proton at C4 of α-methyl-3-keto-d-glucoside in solvent D2O. The E146Q mutant does not catalyze this exchange reaction. These results indicate that YcjR catalyzes the isomerization of 3-keto-d-glucosides via proton abstraction at C4 by Glu-146 to form a cis-enediolate intermediate that is subsequently protonated on the opposite face by Glu-240 to generate the corresponding 3-keto-d-guloside. This conclusion is supported by docking of the cis-enediolate intermediate into the active site of YcjR based on the known binding orientation of d-fructose and d-psicose in the active site of d-psicose-3-epimerase.
Assuntos
Escherichia coli K12/química , Proteínas de Escherichia coli/metabolismo , Glucosídeos/metabolismo , Cristalografia por Raios X , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/química , Glucosídeos/química , Modelos Moleculares , Conformação Molecular , EstereoisomerismoRESUMO
LigJ from the soil bacterium Sphingobium sp. SYK-6 catalyzes the reversible hydration of (3 Z)-2-keto-4-carboxy-3-hexenedioate (KCH) to 4-carboxy-4-hydroxy-2-oxoadipate (CHA) in the degradation of lignin in the protocatechuate 4,5-cleavage pathway. LigJ is a member of the amidohydrolase superfamily and an enzyme in cog2159. The three-dimensional crystal structure of wild-type LigJ was determined in the presence [Protein Data Bank (PDB) entry 6DXQ ] and absence of the product CHA (PDB entry 6DWV ). The protein folds as a distorted (ß/α)8-barrel, and a single zinc ion is bound in the active site at the C-terminal end of the central ß-barrel. The product CHA is ligated to the zinc ion in the active site via the displacement of a single water molecule from the coordination shell of the metal center in LigJ. The product-bound structure reveals that the enzyme catalyzes the hydration of KCH with the formation of a chiral center at C4 with S stereochemistry. The E284Q mutant was unable to catalyze the hydration of KCH to CHA, and the structure of this mutant was determined in the presence of the substrate KCH (PDB entry 6DXS ). On the basis of the structure of LigJ in the presence of KCH and CHA, it is proposed that the side chain carboxylate of Glu-284 functions as a general base in the abstraction of a proton from a bound water molecule for nucleophilic attack at C4 of the substrate. The reaction is facilitated by the delocalization of the negative charge to the metal center via the carbonyl group at C2 of the substrate. C3 of the substrate is subsequently protonated by Glu-284 functioning as a general acid. The overall reaction occurs by the syn addition of water to the double bond between C4 and C3 of the substrate KCH. The kinetic constants for the hydration of KCH to CHA by LigJ at pH 8.0 are 25 s-1 ( kcat) and 2.6 × 106 M-1 s-1 ( kcat/ Km).
Assuntos
Proteínas de Bactérias/química , Hidroliases/química , Sphingomonadaceae/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Hidroliases/genética , Lignina/química , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Sphingomonadaceae/genética , Relação Estrutura-AtividadeRESUMO
A novel phosphotriesterase was recently discovered and purified from Sphingobium sp. TCM1 (Sb-PTE) and shown to catalyze the hydrolysis of a broad spectrum of organophosphate esters with a catalytic efficiency that exceeds 10(6) M(-1) s(-1) for the hydrolysis of triphenyl phosphate. The enzyme was crystallized and the three-dimensional structure determined to a resolution of 2.1 Å using single-wavelength anomalous diffraction (Protein Data Bank entry 5HRM ). The enzyme adopts a seven-bladed ß-propeller protein fold, and three disulfide bonds were identified between Cys-146 and Cys-242, Cys-411 and Cys-443, and Cys-542 and Cys-559. The active site of Sb-PTE contains a binuclear manganese center that is nearly identical to that of the structurally unrelated phosphotriesterase from Pseudomonas diminuta (Pd-PTE). The two metal ions in the active site are bridged to one another by Glu-201 and a water molecule. The α-metal ion is further coordinated to the protein by interactions with His-389, His-475, and Glu-407, whereas the ß-metal ion is further liganded to His-317 and His-258. Computational docking of mimics of the proposed pentavalent reaction intermediates for the hydrolysis of organophosphates was used to provide a model for the binding of chiral substrates in the active site of Sb-PTE. The most striking difference in the catalytic properties of Sb-PTE, relative to those of Pd-PTE, is the enhanced rate of hydrolysis of organophosphate esters with substantially weaker leaving groups. The structural basis for this difference in the catalytic properties between Sb-PTE and Pd-PTE, despite the nearly identical binuclear metal centers for the activation of the substrate and nucleophilic water molecule, is at present unclear.
Assuntos
Manganês , Hidrolases de Triester Fosfórico/química , Hidrolases de Triester Fosfórico/metabolismo , Sphingomonadaceae/enzimologia , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Mutagênese , Hidrolases de Triester Fosfórico/genética , Conformação Proteica em Folha beta , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismoRESUMO
The V-type organophosphorus nerve agents are among the most hazardous compounds known. Previous efforts to evolve the bacterial enzyme phosphotriesterase (PTE) for the hydrolytic decontamination of VX resulted in the identification of the variant L7ep-3a, which has a kcat value more than 2 orders of magnitude higher than that of wild-type PTE for the hydrolysis of VX. Because of the relatively small size of the O-ethyl, methylphosphonate center in VX, stereoselectivity is not a major concern. However, the Russian V-agent, VR, contains a larger O-isobutyl, methylphosphonate center, making stereoselectivity a significant issue since the SP-enantiomer is expected to be significantly more toxic than the RP-enantiomer. The three-dimensional structure of the L7ep-3a variant was determined to a resolution of 2.01 Å (PDB id: 4ZST ). The active site of the L7ep-3a mutant has revealed a network of hydrogen bonding interactions between Asp-301, Tyr-257, Gln-254, and the hydroxide that bridges the two metal ions. A series of new analogues that mimic VX and VR has helped to identify critical structural features for the development of new enzyme variants that are further enhanced for the catalytic detoxification of VR and VX. The best of these mutants has been shown to have a reversed stereochemical preference for the hydrolysis of VR-chiral center analogues. This mutant hydrolyzes the two enantiomers of VR 160- and 600-fold faster than wild-type PTE hydrolyzes the SP-enantiomer of VR.
Assuntos
Substâncias para a Guerra Química/metabolismo , Variação Genética , Compostos Organotiofosforados/metabolismo , Hidrolases de Triester Fosfórico/metabolismo , Substâncias para a Guerra Química/química , Cristalografia por Raios X , Variação Genética/genética , Compostos Organotiofosforados/química , Hidrolases de Triester Fosfórico/química , Hidrolases de Triester Fosfórico/genética , Estrutura Secundária de ProteínaRESUMO
A series of arylsulfones and heteroarylsulfones have previously been demonstrated to dysregulate the conserved bacterial ClpP protease, causing the unspecific degradation of essential cellular housekeeping proteins and ultimately resulting in cell death. A cocrystal structure of a 2-ß-sulfonylamide analog, ACP1-06, with Escherichia coli ClpP showed that its 2-pyridyl sulfonyl substituent adopts two orientations in the binding site related through a sulfone bond rotation. From this, a new bis-aryl phosphine oxide scaffold, designated as ACP6, was designed based on a "conformation merging" approach of the dual orientation of the ACP1-06 sulfone. One analog, ACP6-12, exhibited over a 10-fold increase in activity over the parent ACP1-06 compound, and a cocrystal X-ray structure with ClpP confirmed its predicted binding conformation. This allowed for a comparative analysis of how different ligand classes bind to the hydrophobic binding site. The study highlights the successful application of structure-based rational design of novel phosphine oxide-based antibiotics.
Assuntos
Antibacterianos , Desenho de Fármacos , Endopeptidase Clp , Escherichia coli , Óxidos , Fosfinas , Fosfinas/química , Fosfinas/farmacologia , Endopeptidase Clp/metabolismo , Endopeptidase Clp/antagonistas & inibidores , Endopeptidase Clp/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Óxidos/química , Escherichia coli/enzimologia , Escherichia coli/efeitos dos fármacos , Relação Estrutura-Atividade , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/antagonistas & inibidores , Cristalografia por Raios X , Modelos Moleculares , Sítios de Ligação , Estrutura MolecularRESUMO
The mitochondrial ClpP protease is responsible for mitochondrial protein quality control through specific degradation of proteins involved in several metabolic processes. ClpP overexpression is also required in many cancer cells to eliminate reactive oxygen species (ROS)-damaged proteins and to sustain oncogenesis. Targeting ClpP to dysregulate its function using small-molecule agonists is a recent strategy in cancer therapy. Here, we synthesized imipridone-derived compounds and related chemicals, which we characterized using biochemical, biophysical, and cellular studies. Using X-ray crystallography, we found that these compounds have enhanced binding affinities due to their greater shape and charge complementarity with the surface hydrophobic pockets of ClpP. N-terminome profiling of cancer cells upon treatment with one of these compounds revealed the global proteomic changes that arise and identified the structural motifs preferred for protein cleavage by compound-activated ClpP. Together, our studies provide the structural and molecular basis by which dysregulated ClpP affects cancer cell viability and proliferation.
Assuntos
Mitocôndrias , Proteômica , Mitocôndrias/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , ProteóliseRESUMO
Isopentenyl phosphate kinase (IPK) catalyzes the phosphorylation of isopentenyl phosphate to form the isoprenoid precursor isopentenyl diphosphate in the archaeal mevalonate pathway. This enzyme is highly homologous to fosfomycin kinase (FomA), an antibiotic resistance enzyme found in a few strains of Streptomyces and Pseudomonas whose mode of action is inactivation by phosphorylation. Superposition of Thermoplasma acidophilum (THA) IPK and FomA structures aligns their respective substrates and catalytic residues, including H50 and K14 in THA IPK and H58 and K18 in Streptomyces wedmorensis FomA. These residues are conserved only in the IPK and FomA members of the phosphate subdivision of the amino acid kinase family. We measured the fosfomycin kinase activity of THA IPK [K(m) = 15.1 ± 1.0 mM, and k(cat) = (4.0 ± 0.1) × 10⻲ s⻹], resulting in a catalytic efficiency (k(cat)/K(m) = 2.6 M⻹ s⻹) that is 5 orders of magnitude lower than that of the native reaction. Fosfomycin is a competitive inhibitor of IPK (K(i) = 3.6 ± 0.2 mM). Molecular dynamics simulation of the IPK·fosfomycin·MgATP complex identified two binding poses for fosfomycin in the IP binding site, one of which results in a complex analogous to the native IPK·IP·ATP complex that engages H50 and the lysine triangle formed by K5, K14, and K205. The other binding pose leads to a dead-end complex that engages K204 near the IP binding site to bind fosfomycin. Our findings suggest a mechanism for acquisition of FomA-based antibiotic resistance in fosfomycin-producing organisms.
Assuntos
Antibacterianos/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Fosfomicina/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Thermoplasma/enzimologia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Bases de Dados de Proteínas , Farmacorresistência Bacteriana/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fosfomicina/química , Fosfomicina/farmacologia , Cinética , Magnésio/química , Magnésio/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Fosforilação/efeitos dos fármacos , Fosfotransferases/química , Fosfotransferases/metabolismo , Estabilidade Proteica , Streptomyces/enzimologia , Homologia Estrutural de Proteína , Especificidade por SubstratoRESUMO
The ClpP protease is found across eukaryotic and prokaryotic organisms. It is well-characterized in bacteria where its function is important in maintaining protein homeostasis. Along with its ATPase partners, it has been shown to play critical roles in the regulation of enzymes involved in important cellular pathways. In eukaryotes, ClpP is found within cellular organelles. Proteomic studies have begun to characterize the role of this protease in the mitochondria through its interactions. Here, we discuss the proteomic techniques used to identify its interactors and present an atlas of mitochondrial ClpP substrates. The ClpP substrate pool is extensive and consists of proteins involved in essential mitochondrial processes such as the Krebs cycle, oxidative phosphorylation, translation, fatty acid metabolism, and amino acid metabolism. Discoveries of these associations have begun to illustrate the functional significance of ClpP in human health and disease.
Assuntos
Endopeptidase Clp , Peptídeo Hidrolases , Bactérias/metabolismo , Endopeptidase Clp/química , Humanos , Mitocôndrias/metabolismo , Peptídeo Hidrolases/metabolismo , ProteômicaRESUMO
Evolving antimicrobial resistance has motivated the search for novel targets and alternative therapies. Caseinolytic protease (ClpP) has emerged as an enticing new target since its function is conserved and essential for bacterial fitness, and because its inhibition or dysregulation leads to bacterial cell death. ClpP protease function controls global protein homeostasis and is, therefore, crucial for the maintenance of the bacterial proteome during growth and infection. Previously, acyldepsipeptides (ADEPs) were discovered to dysregulate ClpP, leading to bactericidal activity against both actively growing and dormant Gram-positive pathogens. Unfortunately, these compounds had very low efficacy against Gram-negative bacteria. Hence, we sought to develop non-ADEP ClpP-targeting compounds with activity against Gram-negative species and called these activators of self-compartmentalizing proteases (ACPs). These ACPs bind and dysregulate ClpP in a manner similar to ADEPs, effectively digesting bacteria from the inside out. Here, we performed further ACP derivatization and testing to improve the efficacy and breadth of coverage of selected ACPs against Gram-negative bacteria. We observed that a diverse collection of Neisseria meningitidis and Neisseria gonorrhoeae clinical isolates were exquisitely sensitive to these ACP analogues. Furthermore, based on the ACP-ClpP cocrystal structure solved here, we demonstrate that ACPs could be designed to be species specific. This validates the feasibility of drug-based targeting of ClpP in Gram-negative bacteria.
Assuntos
Antibacterianos , Depsipeptídeos , Peptídeo Hidrolases , Antibacterianos/farmacologia , Bactérias , Depsipeptídeos/farmacologia , Bactérias Gram-NegativasRESUMO
Bacterial ClpP is a highly conserved, cylindrical, self-compartmentalizing serine protease required for maintaining cellular proteostasis. Small molecule acyldepsipeptides (ADEPs) and activators of self-compartmentalized proteases 1 (ACP1s) cause dysregulation and activation of ClpP, leading to bacterial cell death, highlighting their potential use as novel antibiotics. Structural changes in Neisseria meningitidis and Escherichia coli ClpP upon binding to novel ACP1 and ADEP analogs were probed by X-ray crystallography, methyl-TROSY NMR, and small angle X-ray scattering. ACP1 and ADEP induce distinct conformational changes in the ClpP structure. However, reorganization of electrostatic interaction networks at the ClpP entrance pores is necessary and sufficient for activation. Further activation is achieved by formation of ordered N-terminal axial loops and reduction in the structural heterogeneity of the ClpP cylinder. Activating mutations recapitulate the structural effects of small molecule activator binding. Our data, together with previous findings, provide a structural basis for a unified mechanism of compound-based ClpP activation.
Assuntos
Endopeptidase Clp/química , Modelos Moleculares , Eletricidade Estática , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Endopeptidase Clp/metabolismo , Ativação Enzimática , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Tirosina Fosfatases/químicaRESUMO
The mitochondrial caseinolytic protease P (ClpP) plays a central role in mitochondrial protein quality control by degrading misfolded proteins. Using genetic and chemical approaches, we showed that hyperactivation of the protease selectively kills cancer cells, independently of p53 status, by selective degradation of its respiratory chain protein substrates and disrupts mitochondrial structure and function, while it does not affect non-malignant cells. We identified imipridones as potent activators of ClpP. Through biochemical studies and crystallography, we show that imipridones bind ClpP non-covalently and induce proteolysis by diverse structural changes. Imipridones are presently in clinical trials. Our findings suggest a general concept of inducing cancer cell lethality through activation of mitochondrial proteolysis.
Assuntos
Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Leucemia Mieloide Aguda/tratamento farmacológico , Mitocôndrias/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Endopeptidase Clp/química , Feminino , Células HCT116 , Células HEK293 , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Imidazóis , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Modelos Moleculares , Mutação Puntual , Conformação Proteica/efeitos dos fármacos , Proteólise , Piridinas , Pirimidinas , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
In prokaryotic cells and eukaryotic organelles, the ClpP protease plays an important role in proteostasis. The disruption of the ClpP function has been shown to influence the infectivity and virulence of a number of bacterial pathogens. More recently, ClpP has been found to be involved in various forms of carcinomas and in Perrault syndrome, which is an inherited condition characterized by hearing loss in males and females and by ovarian abnormalities in females. Hence, targeting ClpP is a potentially viable, attractive option for the treatment of different ailments. Herein, the biochemical and cellular activities of ClpP are discussed along with the mechanisms by which ClpP affects bacterial pathogenesis and various human diseases. In addition, a comprehensive overview is given of the new classes of compounds in development that target ClpP. Many of these compounds are currently primarily aimed at treating bacterial infections. Some of these compounds inhibit ClpP activity, while others activate the protease and lead to its dysregulation. The ClpP activators are remarkable examples of small molecules that inhibit protein-protein interactions but also result in a gain of function.
Assuntos
Infecções Bacterianas/fisiopatologia , Endopeptidase Clp/fisiologia , Neoplasias/fisiopatologia , Adenosina Trifosfatases/antagonistas & inibidores , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Proteínas de Bactérias/antagonistas & inibidores , Endopeptidase Clp/antagonistas & inibidores , Endopeptidase Clp/química , Inibidores Enzimáticos/farmacologia , Proteínas de Choque Térmico/antagonistas & inibidores , Humanos , Mitocôndrias/fisiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologiaRESUMO
Acyldepsipeptides (ADEPs) are potential antibiotics that dysregulate the activity of the highly conserved tetradecameric bacterial ClpP protease, leading to bacterial cell death. Here, we identified ADEP analogs that are potent dysregulators of the human mitochondrial ClpP (HsClpP). These ADEPs interact tightly with HsClpP, causing the protease to non-specifically degrade model substrates. Dysregulation of HsClpP activity by ADEP was found to induce cytotoxic effects via activation of the intrinsic, caspase-dependent apoptosis. ADEP-HsClpP co-crystal structure was solved for one of the analogs revealing a highly complementary binding interface formed by two HsClpP neighboring subunits but, unexpectedly, with HsClpP in the compact conformation. Given that HsClpP is highly expressed in multiple cancers and has important roles in cell metastasis, our findings suggest a therapeutic potential for ADEPs in cancer treatment.
Assuntos
Antibacterianos/efeitos adversos , Antibacterianos/química , Apoptose/efeitos dos fármacos , Depsipeptídeos/efeitos adversos , Depsipeptídeos/química , Endopeptidase Clp/metabolismo , Mitocôndrias/efeitos dos fármacos , Acilação , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Linhagem Celular Tumoral , Depsipeptídeos/farmacologia , Endopeptidase Clp/química , Células HEK293 , Humanos , Mitocôndrias/enzimologia , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologiaRESUMO
Species of the fungal genus Aspergillus are significant human and agricultural pathogens that are often refractory to existing antifungal treatments. Protein farnesyltransferase (FTase), a critical enzyme in eukaryotes, is an attractive potential target for antifungal drug discovery. We report high-resolution structures of A. fumigatus FTase (AfFTase) in complex with substrates and inhibitors. Comparison of structures with farnesyldiphosphate (FPP) bound in the absence or presence of peptide substrate, corresponding to successive steps in ordered substrate binding, revealed that the second substrate-binding step is accompanied by motions of a loop in the catalytic site. Re-examination of other FTase structures showed that this motion is conserved. The substrate- and product-binding clefts in the AfFTase active site are wider than in human FTase (hFTase). Widening is a consequence of small shifts in the α-helices that comprise the majority of the FTase structure, which in turn arise from sequence variation in the hydrophobic core of the protein. These structural effects are key features that distinguish fungal FTases from hFTase. Their variation results in differences in steady-state enzyme kinetics and inhibitor interactions and presents opportunities for developing selective anti-fungal drugs by exploiting size differences in the active sites. We illustrate the latter by comparing the interaction of ED5 and Tipifarnib with hFTase and AfFTase. In AfFTase, the wider groove enables ED5 to bind in the presence of FPP, whereas in hFTase it binds only in the absence of substrate. Tipifarnib binds similarly to both enzymes but makes less extensive contacts in AfFTase with consequently weaker binding.
Assuntos
Antifúngicos/farmacocinética , Aspergillus fumigatus/metabolismo , Farnesiltranstransferase/química , Farnesiltranstransferase/metabolismo , Peptídeos/química , Aspergillus fumigatus/química , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Peptídeos/antagonistas & inibidores , Fosfatos de Poli-Isoprenil/antagonistas & inibidores , Fosfatos de Poli-Isoprenil/química , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Quinolonas/farmacocinética , Sesquiterpenos/antagonistas & inibidores , Sesquiterpenos/química , Sulfonamidas/farmacocinética , BenzenossulfonamidasRESUMO
Isopentenyl phosphate kinase (IPK) catalyzes the ATP-dependent phosphorylation of isopentenyl phosphate (IP) to form isopentenyl diphosphate (IPP) during biosynthesis of isoprenoid metabolites in Archaea. The structure of IPK from the archeaon Thermoplasma acidophilum (THA) was recently reported and guided the reconstruction of the IP binding site to accommodate the longer chain isoprenoid monophosphates geranyl phosphate (GP) and farnesyl phosphate (FP). We created four mutants of THA IPK with different combinations of alanine substitutions for Tyr70, Val73, Val130, and Ile140, amino acids with bulky side chains that limited the size of the side chain of the isoprenoid phosphate substrate that could be accommodated in the active site. The mutants had substantially increased GP kinase activity, with 20-200-fold increases in k(cat)(GP) and 30-130-fold increases in k(cat)(GP)/K(M)(GP) relative to those of wild-type THA IPK. The mutations also resulted in a 10(6)-fold decrease in k(cat)(IP)/K(M)(IP) compared to that of wild-type IPK. No significant change in the kinetic parameters for the cosubstrate ATP was observed, signifying that binding between the nucleotide binding site and the IP binding site was not cooperative. The shift in substrate selectivity from IP to GP, and to a lesser extent, FP, in the mutants could act as a starting point for the creation of more efficient GP or FP kinases whose products could be exploited for the chemoenzymatic synthesis of radiolabeled isoprenoid diphosphates.
Assuntos
Mutagênese/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ativação Enzimática/fisiologia , Cinética , Proteínas Quinases/química , Especificidade por Substrato/genéticaRESUMO
Isoprenoid compounds are ubiquitous in nature, participating in important biological phenomena such as signal transduction, aerobic cellular respiration, photosynthesis, insect communication, and many others. They are derived from the 5-carbon isoprenoid substrates isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In Archaea and Eukarya, these building blocks are synthesized via the mevalonate pathway. However, the genes required to convert mevalonate phosphate (MP) to IPP are missing in several species of Archaea. An enzyme with isopentenyl phosphate kinase (IPK) activity was recently discovered in Methanocaldococcus jannaschii (MJ), suggesting a departure from the classical sequence of converting MP to IPP. We have determined the high-resolution crystal structures of isopentenyl phosphate kinases in complex with both substrates and products from Thermoplasma acidophilum (THA), as well as the IPK from Methanothermobacter thermautotrophicus (MTH), by means of single-wavelength anomalous diffraction (SAD) and molecular replacement. A histidine residue (His50) in THA IPK makes a hydrogen bond with the terminal phosphates of IP and IPP, poising these molecules for phosphoryl transfer through an in-line geometry. Moreover, a lysine residue (Lys14) makes hydrogen bonds with nonbridging oxygen atoms at P(alpha) and P(gamma) and with the P(beta)-P(gamma) bridging oxygen atom in ATP. These interactions suggest a transition-state-stabilizing role for this residue. Lys14 is a part of a newly discovered "lysine triangle" catalytic motif in IPKs that also includes Lys5 and Lys205. Moreover, His50, Lys5, Lys14, and Lys205 are conserved in all IPKs and can therefore serve as fingerprints for identifying new homologues.