Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2313568121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648470

RESUMO

United States (US) Special Operations Forces (SOF) are frequently exposed to explosive blasts in training and combat, but the effects of repeated blast exposure (RBE) on SOF brain health are incompletely understood. Furthermore, there is no diagnostic test to detect brain injury from RBE. As a result, SOF personnel may experience cognitive, physical, and psychological symptoms for which the cause is never identified, and they may return to training or combat during a period of brain vulnerability. In 30 active-duty US SOF, we assessed the relationship between cumulative blast exposure and cognitive performance, psychological health, physical symptoms, blood proteomics, and neuroimaging measures (Connectome structural and diffusion MRI, 7 Tesla functional MRI, [11C]PBR28 translocator protein [TSPO] positron emission tomography [PET]-MRI, and [18F]MK6240 tau PET-MRI), adjusting for age, combat exposure, and blunt head trauma. Higher blast exposure was associated with increased cortical thickness in the left rostral anterior cingulate cortex (rACC), a finding that remained significant after multiple comparison correction. In uncorrected analyses, higher blast exposure was associated with worse health-related quality of life, decreased functional connectivity in the executive control network, decreased TSPO signal in the right rACC, and increased cortical thickness in the right rACC, right insula, and right medial orbitofrontal cortex-nodes of the executive control, salience, and default mode networks. These observations suggest that the rACC may be susceptible to blast overpressure and that a multimodal, network-based diagnostic approach has the potential to detect brain injury associated with RBE in active-duty SOF.


Assuntos
Traumatismos por Explosões , Militares , Humanos , Traumatismos por Explosões/diagnóstico por imagem , Adulto , Masculino , Estados Unidos , Imageamento por Ressonância Magnética , Feminino , Tomografia por Emissão de Pósitrons , Cognição/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Adulto Jovem
2.
Brain Inj ; 37(10): 1127-1134, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37165638

RESUMO

OBJECTIVE: This study evaluated frontal behavioural symptoms, via the FrSBe self-report, in military personnel with and without a history of blast-related mild traumatic brain injury (mild TBI). METHODS: Prospective observational cohort study of combat-deployed service members leveraging 1-year and 5-year demographic and follow up clinical outcome data. RESULTS: The blast mild TBI group (n = 164) showed greater frontal behavioural symptoms, including clinically elevated apathy, disinhibition, and executive dysfunction, during a 5-year follow-up, compared to a group of combat-deployed controls (n = 107) without mild TBI history or history of blast exposure. We also explored changes inbehaviourall symptoms over a 4-year span, which showed clinically significant increases in disinhibition in the blast mild TBI group, whereas the control group did not show significant increases in symptoms over time. CONCLUSION: Our findings add to the growing evidence that a proportion of individuals who sustain mild TBI experience persistent behavioural symptoms. We also offer a demonstration of a novel use of the FrSBe as a tool for longitudinal symptom monitoring in a military mild TBI population.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Militares , Transtornos de Estresse Pós-Traumáticos , Humanos , Estudos Prospectivos , Explosões , Transtornos de Estresse Pós-Traumáticos/epidemiologia
3.
J Head Trauma Rehabil ; 37(2): 63-70, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35258037

RESUMO

OBJECTIVE: To examine global disability trajectories in US military with and without traumatic brain injury (TBI) over the first decade following deployment to identify risk profiles for better intervention stratification, hopefully reducing long-term cost. SETTING: Patients and participants were enrolled in combat or directly following medical evacuation at the time of injury and followed up every 6 months for 10 years. PARTICIPANTS: There are 4 main groups (n = 475), 2 primary and 2 exploratory: (1) combat-deployed controls without a history of blast exposure "non-blast- control" (n = 143), (2) concussive blast TBI "'blast-TBI" (n = 236) (primary), (3) combat-deployed controls with a history of blast exposure "blast-control" (n = 54), and (4) patients sustaining a combat concussion not from blast "non-blast-TBI" (n = 42) (exploratory). DESIGN: Prospective, observational, longitudinal study. MAIN MEASURES: Combat concussion, blast exposure, and subsequent head injury exposure over the first decade post-deployment. Global disability measured by the Glasgow Outcome Scale Extended (GOSE). RESULTS: Latent class growth analysis identified 4 main trajectories of global outcome, with service members sustaining combat concussion 37 to 49 times more likely to be in the worse disability trajectories than non-blast-controls (blast-TBI: odds ratio [OR] = 49.33; CI, 19.77-123.11; P < .001; non-blast-TBI: OR = 37.50; CI, 10.01-140.50; P < .001). Even blast-exposed-controls were 5 times more likely to be in these worse disability categories compared with non-blast-controls (OR = 5.00; CI, 1.59-15.99; P = .007). Adjustment for demographic factors and subsequent head injury exposure did not substantially alter these odds ratios. CONCLUSIONS: Very high odds of poor long-term outcome trajectory were identified for those who sustained a concussion in combat, were younger at the time of injury, had lower education, and enlisted in the Army above the risk of deployment alone. These findings help identify a risk profile that could be used to target early intervention and screen for poor long-term outcome to aid in reducing the high public health cost and enhance the long-term quality of life for these service members following deployment.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Lesões Encefálicas Traumáticas , Traumatismos Craniocerebrais , Militares , Transtornos de Estresse Pós-Traumáticos , Traumatismos por Explosões/epidemiologia , Concussão Encefálica/epidemiologia , Lesões Encefálicas Traumáticas/epidemiologia , Humanos , Estudos Longitudinais , Estudos Prospectivos , Qualidade de Vida
4.
Neurocrit Care ; 35(2): 335-346, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34309784

RESUMO

BACKGROUND: Traumatic brainstem injury has yet to be incorporated into widely used imaging classification systems for traumatic brain injury (TBI), and questions remain regarding prognostic implications for this TBI subgroup. To address this, retrospective data on patients from the multicenter prospective Transforming Research and Clinical Knowledge in TBI study were studied. METHODS: Patients with brainstem and cerebrum injury (BSI+) were matched by age, sex, and admission Glasgow Coma Scale (GCS) score to patients with cerebrum injuries only. All patients had an interpretable head computed tomography (CT) scan from the first 48 hours after injury and a 6-month Glasgow Outcome Scale Extended (GOSE) score. CT scans were reviewed for brainstem lesions and, when present, characterized by location, size, and type (traumatic axonal injury, contusion, or Duret hemorrhage). Clinical, demographic, and outcome data were then compared between the two groups. RESULTS: Mann-Whitney U-tests showed no significant difference in 6-month GOSE scores in patients with BSI+ (mean 2.7) compared with patients with similar but only cerebrum injuries (mean 3.9), although there is a trend (p = 0.10). However, subclassification by brainstem lesion type, traumatic axonal injury (mean 4.0) versus Duret hemorrhage or contusion (mean 1.4), did identify a proportion of BSI+ with significantly less favorable outcome (p = 0.002). The incorporation of brainstem lesion type (traumatic axonal injury vs. contusion/Duret), along with GCS into a multivariate logistic regression model of favorable outcome (GOSE score 4-8) did show a significant contribution to the prognostication of this brainstem injury subgroup (odds ratio 0.08, 95% confidence interval 0.00-0.67, p = 0.01). CONCLUSIONS: These findings suggest two groups of patients with brainstem injuries may exist with divergent recovery potential after TBI. These data support the notion that newer CT imaging classification systems may augment traditional clinical measures, such as GCS in identifying those patients with TBI and brainstem injuries that stand a higher chance of favorable outcome.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Tronco Encefálico/diagnóstico por imagem , Escala de Coma de Glasgow , Humanos , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
5.
J Head Trauma Rehabil ; 33(6): E1-E10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29385018

RESUMO

OBJECTIVE: Prior work suggests that younger athletes may be more vulnerable to postconcussive syndrome. We investigated measures of clinical outcome and quantitative volumetric imaging in 10- to 14-year-old adolescent athletes to better understand the impact of concussion on this younger population. SETTING: Outpatient clinics. PARTICIPANTS: Ten- to 14-year-old symptomatic pediatric sports concussion patients and typically developing active controls. DESIGN: Prospective, observational multiclinic study. MAIN MEASURES: Demographics, magnetic resonance imaging, clinical assessments (neurocognitive function, postconcussive symptoms, mental health symptoms, quality of life). RESULTS: Neuropsychological performance was comparable between groups while symptoms of mental health were discriminating and comprised the top regression model describing factors related to overall health behavior impairment. Concussion patients had smaller total brain volume as well as total intracranial volume in comparison with controls even though there was no difference on measures of natural development (age, height, weight, education, gender, and handedness). CONCLUSIONS: Findings indicate that 10- to 14-year-old concussion patients symptomatic at 1 month more likely exhibit mental health symptoms impairing health behavior than cognitive dysfunction. There may be a vulnerability for those with smaller brain volumes at the time of the exposure. The study provides new data to support further investigation into risk factors for prolonged symptoms in this younger athlete population.


Assuntos
Traumatismos em Atletas/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Adolescente , Ansiedade/diagnóstico , Traumatismos em Atletas/psicologia , Concussão Encefálica/psicologia , Estudos de Casos e Controles , Criança , Depressão/diagnóstico , Feminino , Comportamentos Relacionados com a Saúde , Humanos , Masculino , Testes Neuropsicológicos , Estudos Prospectivos , Qualidade de Vida
6.
Brain ; 138(Pt 5): 1314-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740219

RESUMO

High rates of adverse outcomes have been reported following blast-related concussive traumatic brain injury in US military personnel, but the extent to which such adverse outcomes can be predicted acutely after injury is unknown. We performed a prospective, observational study of US military personnel with blast-related concussive traumatic brain injury (n = 38) and controls (n = 34) enrolled between March and September 2012. Importantly all subjects returned to duty and did not require evacuation. Subjects were evaluated acutely 0-7 days after injury at two sites in Afghanistan and again 6-12 months later in the United States. Acute assessments revealed heightened post-concussive, post-traumatic stress, and depressive symptoms along with worse cognitive performance in subjects with traumatic brain injury. At 6-12 months follow-up, 63% of subjects with traumatic brain injury and 20% of controls had moderate overall disability. Subjects with traumatic brain injury showed more severe neurobehavioural, post-traumatic stress and depression symptoms along with more frequent cognitive performance deficits and more substantial headache impairment than control subjects. Logistic regression modelling using only acute measures identified that a diagnosis of traumatic brain injury, older age, and more severe post-traumatic stress symptoms provided a good prediction of later adverse global outcomes (area under the receiver-operating characteristic curve = 0.84). Thus, US military personnel with concussive blast-related traumatic brain injury in Afghanistan who returned to duty still fared quite poorly on many clinical outcome measures 6-12 months after injury. Poor global outcome seems to be largely driven by psychological health measures, age, and traumatic brain injury status. The effects of early interventions and longer term implications of these findings are unknown.


Assuntos
Concussão Encefálica/complicações , Lesões Encefálicas/psicologia , Transtornos Mentais/psicologia , Militares/psicologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Doença Aguda/psicologia , Adulto , Fatores Etários , Lesões Encefálicas/diagnóstico , Lesões Encefálicas/fisiopatologia , Depressão/etiologia , Depressão/psicologia , Feminino , Humanos , Masculino , Transtornos Mentais/complicações , Transtornos Mentais/fisiopatologia , Testes Neuropsicológicos , Estudos Prospectivos , Transtornos de Estresse Pós-Traumáticos/etiologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Estados Unidos , Adulto Jovem
7.
Brain ; 138(Pt 8): 2263-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26084657

RESUMO

Axonal injury is a major contributor to adverse outcomes following brain trauma. However, the extent of axonal injury cannot currently be assessed reliably in living humans. Here, we used two experimental methods with distinct noise sources and limitations in the same cohort of 15 patients with severe traumatic brain injury to assess axonal injury. One hundred kilodalton cut-off microdialysis catheters were implanted at a median time of 17 h (13-29 h) after injury in normal appearing (on computed tomography scan) frontal white matter in all patients, and samples were collected for at least 72 h. Multiple analytes, such as the metabolic markers glucose, lactate, pyruvate, glutamate and tau and amyloid-ß proteins, were measured every 1-2 h in the microdialysis samples. Diffusion tensor magnetic resonance imaging scans at 3 T were performed 2-9 weeks after injury in 11 patients. Stability of diffusion tensor imaging findings was verified by repeat scans 1-3 years later in seven patients. An additional four patients were scanned only at 1-3 years after injury. Imaging abnormalities were assessed based on comparisons with five healthy control subjects for each patient, matched by age and sex (32 controls in total). No safety concerns arose during either microdialysis or scanning. We found that acute microdialysis measurements of the axonal cytoskeletal protein tau in the brain extracellular space correlated well with diffusion tensor magnetic resonance imaging-based measurements of reduced brain white matter integrity in the 1-cm radius white matter-masked region near the microdialysis catheter insertion sites. Specifically, we found a significant inverse correlation between microdialysis measured levels of tau 13-36 h after injury and anisotropy reductions in comparison with healthy controls (Spearman's r = -0.64, P = 0.006). Anisotropy reductions near microdialysis catheter insertion sites were highly correlated with reductions in multiple additional white matter regions. We interpret this result to mean that both microdialysis and diffusion tensor magnetic resonance imaging accurately reflect the same pathophysiological process: traumatic axonal injury. This cross-validation increases confidence in both methods for the clinical assessment of axonal injury. However, neither microdialysis nor diffusion tensor magnetic resonance imaging have been validated versus post-mortem histology in humans. Furthermore, future work will be required to determine the prognostic significance of these assessments of traumatic axonal injury when combined with other clinical and radiological measures.


Assuntos
Axônios/patologia , Lesões Encefálicas/patologia , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Microdiálise , Adolescente , Adulto , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Mol Cell Neurosci ; 66(Pt B): 91-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25684677

RESUMO

In recent years, there has been an increasing interest in the pathophysiology of repetitive concussive traumatic brain injury (rcTBI) in large part due to the association with dramatic cases of progressive neurological deterioration in professional athletes, military personnel, and others. However, our understanding of the pathophysiology of rcTBI is less advanced than for more severe brain injuries. Most prominently, the mechanisms underlying traumatic axonal injury, microglial activation, amyloid-beta accumulation, and progressive tau pathology are not yet known. In addition, the role of injury to dendritic spine cytoskeletal structures, vascular reactivity impairments, and microthrombi are intriguing and subjects of ongoing inquiry. Methods for quantitative analysis of axonal injury, dendritic injury, and synaptic loss need to be refined for the field to move forward in a rigorous fashion. We and others are attempting to develop translational approaches to assess these specific pathophysiological events in both animals and humans to facilitate clinically relevant pharmacodynamic assessments of candidate therapeutics. In this article, we review and discuss several of the recent experimental results from our lab and others. We include new initial data describing the difficulty in modeling progressive tau pathology in experimental rcTBI, and results demonstrating that sertraline can alleviate social interaction deficits and depressive-like behaviors following experimental rcTBI plus foot shock stress. Furthermore, we propose a discrete set of open, experimentally tractable questions that may serve as a framework for future investigations. In addition, we also raise several important questions that are less experimentally tractable at this time, in hopes that they may stimulate future methodological developments to address them. This article is part of a Special Issue entitled "Traumatic Brain Injury".


Assuntos
Axônios/patologia , Concussão Encefálica/fisiopatologia , Lesões Encefálicas/fisiopatologia , Encéfalo/fisiopatologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Microglia/patologia
11.
Neuroimage ; 84: 76-96, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23968735

RESUMO

Blast-related traumatic brain injury (TBI) has been one of the "signature injuries" of the wars in Iraq and Afghanistan. However, neuroimaging studies in concussive 'mild' blast-related TBI have been challenging due to the absence of abnormalities in computed tomography or conventional magnetic resonance imaging (MRI) and the heterogeneity of the blast-related injury mechanisms. The goal of this study was to address these challenges utilizing single-subject, module-based graph theoretic analysis of resting-state functional MRI (fMRI) data. We acquired 20min of resting-state fMRI in 63 U.S. military personnel clinically diagnosed with concussive blast-related TBI and 21 U.S. military controls who had blast exposures but no diagnosis of TBI. All subjects underwent an initial scan within 90days post-injury and 65 subjects underwent a follow-up scan 6 to 12months later. A second independent cohort of 40 U.S. military personnel with concussive blast-related TBI served as a validation dataset. The second independent cohort underwent an initial scan within 30days post-injury. 75% of the scans were of good quality, with exclusions primarily due to excessive subject motion. Network analysis of the subset of these subjects in the first cohort with good quality scans revealed spatially localized reductions in the participation coefficient, a measure of between-module connectivity, in the TBI patients relative to the controls at the time of the initial scan. These group differences were less prominent on the follow-up scans. The 15 brain areas with the most prominent reductions in the participation coefficient were next used as regions of interest (ROIs) for single-subject analyses. In the first TBI cohort, more subjects than would be expected by chance (27/47 versus 2/47 expected, p<0.0001) had 3 or more brain regions with abnormally low between-module connectivity relative to the controls on the initial scans. On the follow-up scans, more subjects than expected by chance (5/37, p=0.044) but fewer subjects than on the initial scans had 3 or more brain regions with abnormally low between-module connectivity. Analysis of the second TBI cohort validation dataset with no free parameters provided a partial replication; again more subjects than expected by chance (8/31, p=0.006) had 3 or more brain regions with abnormally low between-module connectivity on the initial scans, but the numbers were not significant (2/27, p=0.276) on the follow-up scans. A single-subject, multivariate analysis by probabilistic principal component analysis of the between-module connectivity in the 15 identified ROIs, showed that 31/47 subjects in the first TBI cohort were found to be abnormal relative to the controls on the initial scans. In the second TBI cohort, 9/31 patients were found to be abnormal in identical multivariate analysis with no free parameters. Again, there were not substantial differences on the follow-up scans. Taken together, these results indicate that single-subject, module-based graph theoretic analysis of resting-state fMRI provides potentially useful information for concussive blast-related TBI if high quality scans can be obtained. The underlying biological mechanisms and consequences of disrupted between-module connectivity are unknown, thus further studies are required.


Assuntos
Traumatismos por Explosões/fisiopatologia , Concussão Encefálica/fisiopatologia , Lesões Encefálicas/fisiopatologia , Córtex Cerebral/fisiopatologia , Rede Nervosa/fisiopatologia , Adulto , Campanha Afegã de 2001- , Conectoma/métodos , Humanos , Guerra do Iraque 2003-2011 , Masculino , Pessoa de Meia-Idade , Militares , Vias Neurais/fisiopatologia , Descanso , Estados Unidos , Adulto Jovem
12.
N Engl J Med ; 364(22): 2091-100, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21631321

RESUMO

BACKGROUND: Blast-related traumatic brain injuries have been common in the Iraq and Afghanistan wars, but fundamental questions about the nature of these injuries remain unanswered. METHODS: We tested the hypothesis that blast-related traumatic brain injury causes traumatic axonal injury, using diffusion tensor imaging (DTI), an advanced form of magnetic resonance imaging that is sensitive to axonal injury. The subjects were 63 U.S. military personnel who had a clinical diagnosis of mild, uncomplicated traumatic brain injury. They were evacuated from the field to the Landstuhl Regional Medical Center in Landstuhl, Germany, where they underwent DTI scanning within 90 days after the injury. All the subjects had primary blast exposure plus another, blast-related mechanism of injury (e.g., being struck by a blunt object or injured in a fall or motor vehicle crash). Controls consisted of 21 military personnel who had blast exposure and other injuries but no clinical diagnosis of traumatic brain injury. RESULTS: Abnormalities revealed on DTI were consistent with traumatic axonal injury in many of the subjects with traumatic brain injury. None had detectable intracranial injury on computed tomography. As compared with DTI scans in controls, the scans in the subjects with traumatic brain injury showed marked abnormalities in the middle cerebellar peduncles (P<0.001), in cingulum bundles (P=0.002), and in the right orbitofrontal white matter (P=0.007). In 18 of the 63 subjects with traumatic brain injury, a significantly greater number of abnormalities were found on DTI than would be expected by chance (P<0.001). Follow-up DTI scans in 47 subjects with traumatic brain injury 6 to 12 months after enrollment showed persistent abnormalities that were consistent with evolving injuries. CONCLUSIONS: DTI findings in U.S. military personnel support the hypothesis that blast-related mild traumatic brain injury can involve axonal injury. However, the contribution of primary blast exposure as compared with that of other types of injury could not be determined directly, since none of the subjects with traumatic brain injury had isolated primary blast injury. Furthermore, many of these subjects did not have abnormalities on DTI. Thus, traumatic brain injury remains a clinical diagnosis. (Funded by the Congressionally Directed Medical Research Program and the National Institutes of Health; ClinicalTrials.gov number, NCT00785304.).


Assuntos
Traumatismos por Explosões/complicações , Encéfalo/patologia , Lesão Axonal Difusa/diagnóstico , Militares , Adulto , Campanha Afegã de 2001- , Traumatismos por Explosões/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/diagnóstico , Estudos de Casos e Controles , Lesão Axonal Difusa/etiologia , Imagem de Tensor de Difusão , Humanos , Guerra do Iraque 2003-2011 , Masculino , Pessoa de Meia-Idade , Estados Unidos , Adulto Jovem
13.
Mil Med ; 189(3-4): e795-e801, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-37756615

RESUMO

INTRODUCTION: Longitudinal research regarding the pre- and post-separation experience has been relatively limited, despite its potential as a major life transition. Separating from the military and re-integration to civilian life is noted to be a period of increased risk of significant adjustment challenges, which impacts a service member in a multitude of areas. Active duty service members with combat-related physical or mental health or pre-existing adjustment conditions may be more likely to separate from service and more at risk for post-military service adjustment problems. MATERIALS AND METHODS: This is a secondary data analysis from a prospective, observational, longitudinal, multicohort study involving deployed service members originally enrolled between 2008 and 2013 in combat or following medical evacuation to Landstuhl, Germany. Two combat-deployed cohorts were examined: non-head-injured control without blast exposure (n = 109) and combat-related concussion arising from blast (n = 165). Comprehensive clinical evaluations performed at 1 year and 5 year follow-up included identical assessment batteries for neurobehavioral, psychiatric, and cognitive outcomes. In addition to demographics collected at each study visit, the current analysis leveraged the Glasgow Outcome Scale Extended (GOS-E), a measure of overall global disability. For neurobehavioral impairment, the Neurobehavioral Rating Scale-Revised (NRS) was used as well as the Headache Impact Test (HIT-6) to assess headache burden. To compare psychiatric symptom burden between those separated to those still serving, the Clinician-Administered PTSD Scale for DSM-IV (CAPS) and Montgomery-Asberg Depression Rating Scale (MADRS) for depression were used as well as the Michigan Alcohol Screening Test (MAST) to be able to compare alcohol misuse across groups. Overall cognitive function/performance was defined for each service member by aggregating the 19 neuropsychological measures. RESULTS: Overall comparisons following adjustment by linear regression and correction for multiple comparisons by separation status subgroup for non-blast control or blast traumatic brain injury (TBI) identified significant differences at 5 years post-enrollment in measures of global disability, neurobehavioral impairment, and psychiatric symptom burden. Those who separated had worse global disability, worse neurobehavioral symptoms, worse Post-Traumatic Stress Disorder symptoms, and worse depression symptoms than active duty service members. While service members who sustain a mild blast TBI during combat are more likely to separate from service within 5 years, there is a proportion of those non-injured who also leave during this time frame. Clinical profiles of both groups suggest service members who separated have elevated psychiatric and neurobehavioral symptoms but not cognitive dysfunction. Interestingly, the symptom load in these same domains is lower for those without blast TBI who separated during this time frame. CONCLUSIONS: These results appear to support previous research depicting that, for some service members, transitioning out of the military and re-integrating into civilian life can be a challenging adjustment. Many factors, including personal and social circumstances, prior mental or emotional difficulties, availability of social or community support or resources, can influence the adjustment outcomes of veterans. Service members with prior adjustment difficulties and/or those with blast TBI history (and ongoing neurobehavioral symptoms) may find the transition from military to civilian life even more challenging, given the potential substantial changes in lifestyle, structure, identity, and support.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Lesões Encefálicas Traumáticas , Militares , Transtornos de Estresse Pós-Traumáticos , Humanos , Traumatismos por Explosões/complicações , Traumatismos por Explosões/epidemiologia , Traumatismos por Explosões/diagnóstico , Concussão Encefálica/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/epidemiologia , Cognição , Cefaleia , Militares/psicologia , Estudos Prospectivos , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/etiologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Estudos Longitudinais
14.
J Neurotrauma ; 41(3-4): 529-536, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37974411

RESUMO

We examined whether females with a history of traumatic brain injury (TBI) and intimate partner violence (IPV) have greater exposure to lifetime trauma relative to females with TBI but no IPV history. Further, we assessed the effects of lifetime trauma on psychological outcomes after TBI. Female participants (n = 70; age M [standard deviation-SD] = 50.5 [15.2] years) with TBI (time since injury median [interquartile range -IQR] = 10.2 [5.3-17.8] years) completed a structured assessment of lifetime history of TBI, including an IPV module to query head injuries from physical violence by an intimate partner. We characterized lifetime trauma exposure with the Adverse Childhood Experiences (ACEs) questionnaire and Survey of Exposure to Community Violence (CV). We evaluated psychological functioning with self-report questionnaires of post-traumatic stress disorder (PTSD), depression, and anxiety symptoms. Compared with those with no IPV history (n = 51), participants reporting IPV-related head injuries (n = 19; 27.1%) reported more ACEs (M[SD] IPV: 4.5[2.9]; No IPV: 1.6[1.8], p < 0.001, d = 1.08) and greater CV (IPV: 17.5[8.4]; No IPV: 7.6[6.1], p < .0001, d = 1.26). Within the full sample, ACEs (ß = 0.21, 95% confidence interval [CI] = 0.04-0.39) and CV (ß = 0.07, 95% CI = 0.01-0.13) predicted worse PTSD symptoms, while IPV alone did not. Exposure to all three sources of trauma (ACEs, CV, and IPV) was associated with worse PTSD symptoms relative to fewer traumas. The results highlight the scope of traumatic exposures among TBI survivors and the importance of considering IPV and other lifetime trauma exposure in assessing and managing TBI. Trauma-informed interventions that are modified for TBI-related impairment may offer improved outcomes in managing psychological symptoms.


Assuntos
Lesões Encefálicas Traumáticas , Violência por Parceiro Íntimo , Transtornos de Estresse Pós-Traumáticos , Feminino , Humanos , Criança , Violência por Parceiro Íntimo/psicologia , Lesões Encefálicas Traumáticas/psicologia , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/etiologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Ansiedade/diagnóstico , Inquéritos e Questionários
15.
Br J Radiol ; 97(1155): 614-621, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38303547

RESUMO

OBJECTIVES: To compare brain MRI measures between Adult Changes in Thought (ACT) participants who underwent research, clinical, or both MRI scans, and clinical health measures across the groups and non-MRI subjects. METHODS: Retrospective cohort study leveraging MRI, clinical, demographic, and medication data from ACT. Three neuroradiologists reviewed MRI scans using NIH Neuroimaging Common Data Elements (CDEs). Total brain and white matter hyperintensity (WMH) volumes, clinical characteristics, and outcome measures of brain and overall health were compared between groups. 1166 MRIs were included (77 research, 1043 clinical, and 46 both) and an additional 3146 participants with no MRI were compared. RESULTS: Compared to the group with research MRI only, the clinical MRI group had higher prevalence of the following: acute infarcts, chronic haematoma, subarachnoid haemorrhage, subdural haemorrhage, haemorrhagic transformation, and hydrocephalus (each P < .001). Quantitative WMH burden was significantly lower (P < .001) and total brain volume significantly higher (P < .001) in research MRI participants compared to other MRI groups. Prevalence of hypertension, self-reported cerebrovascular disease, congestive heart failure, dementia, and recent hospitalization (all P < .001) and diabetes (P = .002) differed significantly across groups, with smaller proportions in the research MRI group. CONCLUSION: In ageing populations, significant differences were observed in MRI metrics between research MRI and clinical MRI groups, and clinical health metric differences between research MRI, clinical MRI, and no-MRI groups. ADVANCES IN KNOWLEDGE: This questions whether research cohorts can adequately represent the greater ageing population undergoing imaging. These findings may also be useful to radiologists when interpreting neuroimaging of ageing.


Assuntos
Encéfalo , Transtornos Cerebrovasculares , Adulto , Humanos , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Envelhecimento , Neuroimagem , Imageamento por Ressonância Magnética/métodos
16.
J Neurotrauma ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38482818

RESUMO

In 2010, the National Institute of Neurological Disorders and Stroke (NINDS) created a set of common data elements (CDEs) to help standardize the assessment and reporting of imaging findings in traumatic brain injury (TBI). However, as opposed to other standardized radiology reporting systems, a visual overview and data to support the proposed standardized lexicon are lacking. We used over 4000 admission computed tomography (CT) scans of patients with TBI from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study to develop an extensive pictorial overview of the NINDS TBI CDEs, with visual examples and background information on individual pathoanatomical lesion types, up to the level of supplemental and emerging information (e.g., location and estimated volumes). We documented the frequency of lesion occurrence, aiming to quantify the relative importance of different CDEs for characterizing TBI, and performed a critical appraisal of our experience with the intent to inform updating of the CDEs. In addition, we investigated the co-occurrence and clustering of lesion types and the distribution of six CT classification systems. The median age of the 4087 patients in our dataset was 50 years (interquartile range, 29-66; range, 0-96), including 238 patients under 18 years old (5.8%). Traumatic subarachnoid hemorrhage (45.3%), skull fractures (37.4%), contusions (31.3%), and acute subdural hematoma (28.9%) were the most frequently occurring CT findings in acute TBI. The ranking of these lesions was the same in patients with mild TBI (baseline Glasgow Coma Scale [GCS] score 13-15) compared with those with moderate-severe TBI (baseline GCS score 3-12), but the frequency of occurrence was up to three times higher in moderate-severe TBI. In most TBI patients with CT abnormalities, there was co-occurrence and clustering of different lesion types, with significant differences between mild and moderate-severe TBI patients. More specifically, lesion patterns were more complex in moderate-severe TBI patients, with more co-existing lesions and more frequent signs of mass effect. These patients also had higher and more heterogeneous CT score distributions, associated with worse predicted outcomes. The critical appraisal of the NINDS CDEs was highly positive, but revealed that full assessment can be time consuming, that some CDEs had very low frequencies, and identified a few redundancies and ambiguity in some definitions. Whilst primarily developed for research, implementation of CDE templates for use in clinical practice is advocated, but this will require development of an abbreviated version. In conclusion, with this study, we provide an educational resource for clinicians and researchers to help assess, characterize, and report the vast and complex spectrum of imaging findings in patients with TBI. Our data provides a comprehensive overview of the contemporary landscape of TBI imaging pathology in Europe, and the findings can serve as empirical evidence for updating the current NINDS radiologic CDEs to version 3.0.

17.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37333251

RESUMO

We present open-source tools for 3D analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (i) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (ii) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer's Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer's disease cases and controls. The tools are available in our widespread neuroimaging suite "FreeSurfer" ( https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools ).

19.
Biol Res Nurs ; 25(3): 341-352, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36398659

RESUMO

BACKGROUND: Medical and scientific advancement worldwide has led to a longer lifespan. With the population aging comes the risk of developing cognitive decline. The incorporation of neuroimaging measures in evaluating cognitive changes is limited in nursing research. The aim of this review is to introduce nurse scientists to neuroimaging measures employed to assess the association between brain and cognitive changes. METHODS: Relevant literature was identified by searching CINAHL, Web of Science, and PubMed databases using the following keywords: "neuroimaging measures," "aging," "cognition," "qualitative scoring," "cognitive ability," "molecular," "structural," and "functional." RESULTS: Neuroimaging measures can be categorized into structural, functional, and molecular imaging approaches. The structural imaging technique visualizes the anatomical regions of the brain. Visual examination and volumetric segmentation of select structural sequences extract information such as white matter hyperintensities and cerebral atrophy. Functional imaging techniques evaluate brain regions and underlying processes using blood-oxygen-dependent signals. Molecular imaging technique is the real-time visualization of biological processes at the cellular and molecular levels in a given region. Examples of biological measures associated with neurodegeneration include decreased glutamine level, elevated total choline, and elevated Myo-inositol. DISCUSSION: Nursing is at the forefront of addressing upstream factors impacting health outcomes across a lifespan of a population at increased risk of progressive cognitive decline. Nurse researchers can become more facile in using these measures both in qualitative and quantitative methodology by leveraging previously gathered neuroimaging clinical data for research purposes to better characterize the associations between symptom progression, disease risk, and health outcomes.


Assuntos
Encéfalo , Disfunção Cognitiva , Neuroimagem , Neuroimagem/métodos , Humanos , Pesquisa em Enfermagem , Encéfalo/diagnóstico por imagem , Cognição , Disfunção Cognitiva/diagnóstico por imagem
20.
J Correct Health Care ; 29(4): 268-274, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37130303

RESUMO

Behavioral health challenges are more prevalent in incarcerated youth than in the general youth population. Questions remain regarding whether physical activity programs can reduce behavioral health challenges in incarcerated youth. Data were available for 1,285 youths incarcerated between January 2017 and December 2018. The structured exercise program was implemented in January 2018. Primary outcomes were numbers of use of force (UoF) and of program modifications (PMs) indicative of delinquent behavior in pre- and post-exercise implementation periods. Rates per 1,000 person-days for UoF (10.0 in 2017 vs. 7.4 in 2018) and for PMs (36.7 vs. 22.9) were statistically different. For youths incarcerated both years, rates per 1,000 person-days for UoF (12.3 vs. 7.9), and for PMs (43.3 vs. 23.5) were statistically different. There was a reduction in behavior modifications in incarcerated youths after implementing the exercise program, but further studies are needed to confirm these results.


Assuntos
Prisioneiros , Humanos , Adolescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA