Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(10): 5368-5380, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30931479

RESUMO

The telomerase holoenzyme responsible for maintaining telomeres in vertebrates requires many components in vivo, including dyskerin. Dyskerin binds and regulates the accumulation of the human telomerase RNA, hTR, as well as other non-coding RNAs that share the conserved H/ACA box motif. The precise mechanism by which dyskerin controls hTR levels is unknown, but is evidenced by defective hTR accumulation caused by substitutions in dyskerin, that are observed in the X-linked telomere biology disorder dyskeratosis congenita (X-DC). To understand the role of dyskerin in hTR accumulation, we analyzed X-DC substitutions K39E and K43E in the poorly characterized dyskerin N-terminus, and A353V within the canonical RNA binding domain (the PUA). These variants exhibited impaired binding to hTR and polyadenylated hTR species, while interactions with other H/ACA RNAs appear largely unperturbed by the N-terminal substitutions. hTR accumulation and telomerase activity defects of dyskerin-deficient cells were rescued by wildtype dyskerin but not the variants. hTR 3' extended or polyadenylated species did not accumulate, suggesting hTR precursor degradation occurs upstream of mature complex assembly in the absence of dyskerin binding. Our findings demonstrate that the dyskerin-hTR interaction mediated by PUA and N-terminal residues of dyskerin is crucial to prevent unchecked hTR degradation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Estabilidade de RNA , RNA/genética , Telomerase/metabolismo , Motivos de Aminoácidos , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Disceratose Congênita/genética , Células HEK293 , Humanos , Mutação , Proteínas Nucleares/genética , Domínios Proteicos , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Telomerase/genética , Telômero/metabolismo
2.
J Biol Chem ; 291(16): 8374-86, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26887940

RESUMO

Normal human stem cells rely on low levels of active telomerase to sustain their high replicative requirements. Deficiency in telomere maintenance mechanisms leads to the development of premature aging diseases, such as dyskeratosis congenita and aplastic anemia. Mutations in the unique "insertion in fingers domain" (IFD) in the human telomerase reverse transcriptase catalytic subunit (hTERT) have previously been identified and shown to be associated with dyskeratosis congenita and aplastic anemia. However, little is known about the molecular mechanisms impacted by these IFD mutations. We performed comparative functional analyses of disease-associated IFD variants at the molecular and cellular levels. We report that hTERT-P721R- and hTERT-R811C-expressing cells exhibited growth defects likely due to impaired TPP1-mediated recruitment of these variant enzymes to telomeres. We showed that activity and processivity of hTERT-T726M failed to be stimulated by TPP1-POT1 overexpression and that dGTP usage by this variant was less efficient compared with the wild-type enzyme. hTERT-P785L-expressing cells did not show growth defects, and this variant likely confers cell survival through increased DNA synthesis and robust activity stimulation by TPP1-POT1. Altogether, our data suggest that multiple mechanisms contribute to cell growth defects conferred by the IFD variants.


Assuntos
Senilidade Prematura/enzimologia , Mutação de Sentido Incorreto , Telomerase/metabolismo , Senilidade Prematura/genética , Senilidade Prematura/patologia , Substituição de Aminoácidos , Aminopeptidases/genética , Aminopeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Células HEK293 , Células HeLa , Humanos , Estrutura Terciária de Proteína , Serina Proteases/genética , Serina Proteases/metabolismo , Complexo Shelterina , Telomerase/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
3.
JCI Insight ; 6(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33470989

RESUMO

Triple-negative breast cancers (TNBCs) lack effective targeted therapies, and cytotoxic chemotherapies remain the standard of care for this subtype. Owing to their increased genomic instability, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) are being tested against TNBCs. In particular, clinical trials are now interrogating the efficacy of PARPi combined with chemotherapies. Intriguingly, while response rates are low, cohort of patients do respond to PARPi in combination with chemotherapies. Moreover, recent studies suggest that an increase in levels of ROS may sensitize cells to PARPi. This represents a therapeutic opportunity, as several chemotherapies, including doxorubicin, function in part by producing ROS. We previously demonstrated that the p66ShcA adaptor protein is variably expressed in TNBCs. We now show that, in response to therapy-induced stress, p66ShcA stimulated ROS production, which, in turn, potentiated the synergy of PARPi in combination with doxorubicin in TNBCs. This p66ShcA-induced sensitivity relied on the accumulation of oxidative damage in TNBCs, rather than genomic instability, to potentiate cell death. These findings suggest that increasing the expression of p66ShcA protein levels in TNBCs represents a rational approach to bolster the synergy between PARPi and doxorubicin.


Assuntos
Antineoplásicos/farmacologia , Poli(ADP-Ribose) Polimerase-1/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Apoptose , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Sobrevivência Celular , Dano ao DNA , Instabilidade Genômica , Humanos , Células MCF-7 , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Genes (Basel) ; 7(9)2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27649246

RESUMO

The vast body of literature regarding human telomere maintenance is a true testament to the importance of understanding telomere regulation in both normal and diseased states. In this review, our goal was simple: tell the telomerase story from the biogenesis of its parts to its maturity as a complex and function at its site of action, emphasizing new developments and how they contribute to the foundational knowledge of telomerase and telomere biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA