Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nanotechnology ; 33(47)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35961291

RESUMO

Bladder cancer has been ranked as one of the most commonly occurring cancers in men and women with approximately half of the diagnoses being the late stage and/or metastatic diseases. We have developed a novel cancer treatment by combining gold nanostar-mediated photothermal therapy with checkpoint inhibitor immunotherapy to treat bladder cancer. Experiment results with a murine animal model demonstrated that our developed photoimmunotherapy therapy is more efficacious than any individual studied treatment. In addition, we used intravital optical imaging with a dorsal skinfold window chamber animal model to study immune responses and immune cell accumulation in a distant tumor following our photoimmunotherapy. The mice used have the CX3CR1-GFP receptor on monocytes, natural killer cells, and dendritic cells allowing us to dynamically track their presence by fluorescence imaging. Our proof-of-principle study results showed that the photoimmunotherapy triggered anti-cancer immune responses to generate anti-cancer immune cells which accumulate in metastatic tumors. Our study results illustrate that intravital optical imaging is an efficient and versatile tool to investigate immune responses and mechanisms of photoimmunotherapy in future studies.


Assuntos
Ouro , Neoplasias da Bexiga Urinária , Animais , Rastreamento de Células , Imunoterapia/métodos , Camundongos , Imagem Óptica , Fototerapia/métodos
2.
Int J Hyperthermia ; 37(1): 854-860, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32664768

RESUMO

BACKGROUND: Hyperthermia (heating to 43 °C) activates the innate immune system and improves bladder cancer chemosensitivity. OBJECTIVE: To evaluate the tissue penetration and safety of convective hyperthermia combined with intravesical mitomycin C (MMC) pharmacokinetics in live porcine bladder models using the Combat bladder recirculation system (BRS). METHODS: Forty 60 kg-female swine were anesthetized and catheterized with a 3-way, 16 F catheter. The Combat device was used to heat the bladders to a target temperature of 43 °C with recirculating intravesical MMC at doses of 40, 80, and 120 mg. Dwell-heat time varied from 30-180 min. Rapid necropsy with immediate flash freezing of tissues, blood and urine occurred. MMC concentrations were measured by liquid chromatography tandem-mass spectrometry. RESULTS: The Combat BRS system was able to achieve target range temperature (42-44 °C) in 12 mins, and this temperature was maintained as long as the device was running. Two factors increased tissue penetration of MMC in the bladder: drug concentration, and the presence of heat. In the hyperthermia arm, MMC penetration saturated at 80 mg, suggesting that with heating, drug absorption may saturate and not require higher doses to achieve the maximal biological effect. Convective hyperthermia did not increase the MMC concentration in the liver, heart, kidney, spleen, lung, and lymph node tissue even at the 120 mg dose. CONCLUSIONS: Convective bladder hyperthermia using the Combat BRS device is safe and the temperature can be maintained at 43 °C. Hyperthermia therapy may increase MMC penetration into the bladder wall but does not result in an increase of MMC levels in other organs.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária , Administração Intravesical , Animais , Antibióticos Antineoplásicos/uso terapêutico , Feminino , Hipertermia , Mitomicina/uso terapêutico , Suínos , Neoplasias da Bexiga Urinária/tratamento farmacológico
3.
Int J Hyperthermia ; 32(4): 417-33, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27132465

RESUMO

The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária/terapia , Animais , Humanos , Temperatura , Termometria
4.
Int J Hyperthermia ; 30(3): 171-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24490762

RESUMO

PURPOSE: This paper aims to evaluate the safety and heating efficiency of external deep pelvic hyperthermia combined with intravesical mitomycin C (MMC) as a novel therapy for non-muscle-invasive bladder cancer (NMIBC). MATERIALS AND METHODS: We enrolled subjects with bacillus Calmette-Guérin (BCG) refractory NMIBC to an early phase clinical trial of external deep pelvic hyperthermia (using a BSD-2000 device) combined with MMC. Bladders were heated to 42 °C for 1 h during intravesical MMC treatment. Treatments were given weekly for 6 weeks, then monthly for 4 months. Heating parameters, treatment toxicity, and clinical outcomes were systematically measured. RESULTS: Fifteen patients were enrolled on the clinical trial. Median age was 66 years and 87% were male. Median European Organisation for Research and Treatment of Cancer (EORTC) recurrence and progression scores were 6 and 8, respectively. The full treatment course was attained in 73% of subjects. Effective bladder heating was possible in all but one patient who could not tolerate the supine position due to lung disease. Adverse events were all minor (grade 2 or less) and no systemic toxicity was observed. The most common adverse effects were Foley catheter pain (40%), abdominal discomfort (33%), chemical cystitis symptoms (27%), and abdominal skin swelling (27%). With a median follow-up of 3.18 years, 67% experienced another bladder cancer recurrence (none were muscle invasive) and 13% experienced an upper tract recurrence. CONCLUSIONS: External deep pelvic hyperthermia using the BSD-2000 device is a safe and reproducible method of heating the bladder in patients undergoing intravesical MMC. The efficacy of this treatment modality should be explored further in clinical trials.


Assuntos
Hipertermia Induzida , Mitomicina/uso terapêutico , Pelve , Neoplasias da Bexiga Urinária/tratamento farmacológico , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitomicina/administração & dosagem , Invasividade Neoplásica , Projetos Piloto , Neoplasias da Bexiga Urinária/patologia
5.
Int J Hyperthermia ; 30(3): 176-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24669804

RESUMO

PURPOSE: The aim of this paper is to report thermal dosimetry characteristics of external deep regional pelvic hyperthermia combined with intravesical mitomycin C (MMC) for treating bladder cancer following transurethral resection of bladder tumour, and to use thermal data to evaluate reliability of delivering the prescribed hyperthermia dose to bladder tissue. MATERIALS AND METHODS: A total of 14 patients were treated with MMC and deep regional hyperthermia (BSD-2000, Sigma Ellipse or Sigma 60). The hyperthermia objective was 42° ± 2 °C to bladder tissue for ≥40 min per treatment. Temperatures were monitored with thermistor probes and recorded values were used to calculate thermal dose and evaluate treatment. Anatomical characteristics were examined for possible correlations with heating. RESULTS: Combined with BSD-2000 standard treatment planning and patient feedback, real-time temperature monitoring allowed thermal steering of heat sufficient to attain the prescribed thermal dose to bladder tissue within patient tolerance in 91.6% of treatments. Mean treatment time for bladder tissue >40 °C was 61.9 ± 11.4 min and mean thermal dose was 21.3 ± 16.5 CEM43. Average thermal doses obtained in normal tissues were 1.6 ± 1.2 CEM43 for the rectum and 0.8 ± 1.3 CEM43 in superficial normal tissues. No significant correlation was seen between patient anatomical characteristics and thermal dose achieved in bladder tissue. CONCLUSIONS: This study demonstrates that a hyperthermia prescription of 42° ± 2 °C for 40-60 min can be delivered safely to bladder tissue with external radiofrequency phased array applicators for a typical range of patient sizes. Using the available thermometry and treatment planning, the BSD-2000 hyperthermia system was shown to be an effective method of focusing heat regionally around the bladder with good patient tolerance.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária/terapia , Humanos , Invasividade Neoplásica , Satisfação do Paciente , Tomografia Computadorizada por Raios X , Neoplasias da Bexiga Urinária/diagnóstico por imagem
6.
Int J Hyperthermia ; 30(5): 285-94, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25144817

RESUMO

PURPOSE: Unresectable chest wall recurrences of breast cancer (CWR) in heavily pretreated patients are especially difficult to treat. We hypothesised that thermally enhanced drug delivery using low temperature liposomal doxorubicin (LTLD), given with mild local hyperthermia (MLHT), will be safe and effective in this population. PATIENTS AND METHODS: This paper combines the results of two similarly designed phase I trials. Eligible CWR patients had progressed on the chest wall after prior hormone therapy, chemotherapy, and radiotherapy. Patients were to get six cycles of LTLD every 21-35 days, followed immediately by chest wall MLHT for 1 hour at 40-42 °C. In the first trial 18 subjects received LTLD at 20, 30, or 40 mg/m2; in the second trial, 11 subjects received LTLD at 40 or 50 mg/m2. RESULTS: The median age of all 29 patients enrolled was 57 years. Thirteen patients (45%) had distant metastases on enrolment. Patients had received a median dose of 256 mg/m2 of prior anthracyclines and a median dose of 61 Gy of prior radiation. The median number of study treatments that subjects completed was four. The maximum tolerated dose was 50 mg/m2, with seven subjects (24%) developing reversible grade 3-4 neutropenia and four (14%) reversible grade 3-4 leucopenia. The rate of overall local response was 48% (14/29, 95% CI: 30-66%), with. five patients (17%) achieving complete local responses and nine patients (31%) having partial local responses. CONCLUSION: LTLD at 50 mg/m2 and MLHT is safe. This combined therapy produces objective responses in heavily pretreated CWR patients. Future work should test thermally enhanced LTLD delivery in a less advanced patient population.


Assuntos
Adenocarcinoma/terapia , Antibióticos Antineoplásicos , Neoplasias da Mama/terapia , Doxorrubicina/análogos & derivados , Hipertermia Induzida , Recidiva Local de Neoplasia/terapia , Adenocarcinoma/sangue , Adulto , Idoso , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/sangue , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Neoplasias da Mama/sangue , Terapia Combinada , Doxorrubicina/efeitos adversos , Doxorrubicina/sangue , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Feminino , Humanos , Dose Máxima Tolerável , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/sangue , Polietilenoglicóis/efeitos adversos , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/uso terapêutico , Temperatura , Resultado do Tratamento
7.
Npj Flex Electron ; 8(1): 54, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220232

RESUMO

With the growth of additive manufacturing (AM), there has been increasing demand for fabricating conformal electronics that directly integrate with larger components to enable unique functionality. However, fabrication of conformal electronics is challenging because devices must merge with host substrates regardless of curvilinearity, topography, or substrate material. In this work, we employ aerosol jet (AJ) printing, an AM method for jet printing electronics using ink-based materials, and a custom-made lathe mechanism for mounting flexible substrates and 3D objects on a rotating axis. Using this method of lathe-based AJ printing, conformal electronics are printed around the circumference of rotational bodies with 3D curvilinear surfaces through cylindrical-coordinate motion. We characterize the diverse capabilities of lathe AJ (LAJ) printing and demonstrate flexible conformal electronics including multilayer carbon nanotube transistors. Lastly, a graphene sensor is conformally printed on an inflated catheter balloon for temperature and inflation monitoring, thus highlighting the versatilities of LAJ printing.

8.
Int J Hyperthermia ; 29(3): 206-10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23489163

RESUMO

PURPOSE: The aim of this study was to determine the kinematic viscosity of human urine and factors associated with its variability. This value is necessary for accurate modelling of fluid mechanics and heat transfer during hyperthermia treatments of bladder cancer. MATERIALS AND METHODS: Urine samples from 64 patients undergoing routine clinical testing were subject to dipstick urinalysis and measurement of viscosity with a Cannon-Fenske viscometer. Viscosity measurements were taken at relevant temperatures for hyperthermia studies: 20 °C (room temperature), 37 °C (body temperature), and 42 °C (clinical hyperthermia temperature). Factors that might affect viscosity were assessed, including glucosuria, haematuria, urinary tract infection status, ketonuria and proteinuria status. The correlation of urine specific gravity and viscosity was measured with Spearman's rho. RESULTS: Urine kinematic viscosity at 20 °C was 1.0700 cSt (standard deviation (SD) = 0.1076), at 37 °C 0.8293 cSt (SD = 0.0851), and at 42 °C 0.6928 cSt (SD = 0.0247). Proteinuria appeared to increase urine viscosity, whereas age, gender, urinary tract infection, glucosuria, ketonuria, and haematuria did not affect it. Urine specific gravity was only modestly correlated with urine viscosity at 20 °C (rho = 0.259), 37 °C (rho = 0.266), and 42 °C (rho = 0.255). CONCLUSIONS: The kinematic viscosity of human urine is temperature dependent and higher than water. Urine specific gravity was not a good predictor of viscosity. Of factors that might affect urine viscosity, only proteinuria appeared to be clinically relevant. Estimates of urine viscosity provided in this manuscript may be useful for temperature modelling of bladder hyperthermia treatments with regard to correct prediction of the thermal conduction effects.


Assuntos
Hipertermia Induzida , Urina/química , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteinúria , Temperatura , Urinálise , Neoplasias da Bexiga Urinária/terapia , Viscosidade
9.
Int J Hyperthermia ; 29(8): 835-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24050253

RESUMO

PURPOSE: This paper describes a preclinical investigation of the feasibility of thermotherapy treatment of bladder cancer with magnetic fluid hyperthermia (MFH), performed by analysing the thermal dosimetry of nanoparticle heating in a rat bladder model. MATERIALS AND METHODS: The bladders of 25 female rats were instilled with magnetite-based nanoparticles, and hyperthermia was induced using a novel small animal magnetic field applicator (Actium Biosystems, Boulder, CO). We aimed to increase the bladder lumen temperature to 42 °C in <10 min and maintain that temperature for 60 min. Temperatures were measured within the bladder lumen and throughout the rat with seven fibre-optic probes (OpSens Technologies, Quebec, Canada). An MRI analysis was used to confirm the effectiveness of the catheterisation method to deliver and maintain various nanoparticle volumes within the bladder. Thermal dosimetry measurements recorded the temperature rise of rat tissues for a variety of nanoparticle exposure conditions. RESULTS: Thermal dosimetry data demonstrated our ability to raise and control the temperature of rat bladder lumen ≥1 °C/min to a steady state of 42 °C with minimal heating of surrounding normal tissues. MRI scans confirmed the homogenous nanoparticle distribution throughout the bladder. CONCLUSION: These data demonstrate that our MFH system with magnetite-based nanoparticles provides well-localised heating of rat bladder lumen with effective control of temperature in the bladder and minimal heating of surrounding tissues.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas de Magnetita/uso terapêutico , Neoplasias da Bexiga Urinária/terapia , Animais , Feminino , Fenômenos Magnéticos , Ratos , Ratos Endogâmicos F344
10.
Int J Hyperthermia ; 29(4): 346-57, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23672453

RESUMO

Abstract Clinical trials have shown that hyperthermia (HT), i.e. an increase of tissue temperature to 39-44 °C, significantly enhance radiotherapy and chemotherapy effectiveness [1]. Driven by the developments in computational techniques and computing power, personalised hyperthermia treatment planning (HTP) has matured and has become a powerful tool for optimising treatment quality. Electromagnetic, ultrasound, and thermal simulations using realistic clinical set-ups are now being performed to achieve patient-specific treatment optimisation. In addition, extensive studies aimed to properly implement novel HT tools and techniques, and to assess the quality of HT, are becoming more common. In this paper, we review the simulation tools and techniques developed for clinical hyperthermia, and evaluate their current status on the path from 'model' to 'clinic'. In addition, we illustrate the major techniques employed for validation and optimisation. HTP has become an essential tool for improvement, control, and assessment of HT treatment quality. As such, it plays a pivotal role in the quest to establish HT as an efficacious addition to multi-modality treatment of cancer.


Assuntos
Hipertermia Induzida , Modelos Biológicos , Simulação por Computador , Humanos , Neoplasias/terapia
11.
Clin Cancer Res ; 29(16): 3214-3224, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327318

RESUMO

PURPOSE: Laser interstitial thermal therapy (LITT) is an effective minimally invasive treatment option for intracranial tumors. Our group produced plasmonics-active gold nanostars (GNS) designed to preferentially accumulate within intracranial tumors and amplify the ablative capacity of LITT. EXPERIMENTAL DESIGN: The impact of GNS on LITT coverage capacity was tested in ex vivo models using clinical LITT equipment and agarose gel-based phantoms of control and GNS-infused central "tumors." In vivo accumulation of GNS and amplification of ablation were tested in murine intracranial and extracranial tumor models followed by intravenous GNS injection, PET/CT, two-photon photoluminescence, inductively coupled plasma mass spectrometry (ICP-MS), histopathology, and laser ablation. RESULTS: Monte Carlo simulations demonstrated the potential of GNS to accelerate and specify thermal distributions. In ex vivo cuboid tumor phantoms, the GNS-infused phantom heated 5.5× faster than the control. In a split-cylinder tumor phantom, the GNS-infused border heated 2× faster and the surrounding area was exposed to 30% lower temperatures, with margin conformation observed in a model of irregular GNS distribution. In vivo, GNS preferentially accumulated within intracranial tumors on PET/CT, two-photon photoluminescence, and ICP-MS at 24 and 72 hours and significantly expedited and increased the maximal temperature achieved in laser ablation compared with control. CONCLUSIONS: Our results provide evidence for use of GNS to improve the efficiency and potentially safety of LITT. The in vivo data support selective accumulation within intracranial tumors and amplification of laser ablation, and the GNS-infused phantom experiments demonstrate increased rates of heating, heat contouring to tumor borders, and decreased heating of surrounding regions representing normal structures.


Assuntos
Neoplasias Encefálicas , Hipertermia Induzida , Humanos , Animais , Camundongos , Ouro , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Encefálicas/cirurgia , Hipertermia Induzida/métodos , Lasers
12.
Med Phys ; 39(3): 1170-81, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22380348

RESUMO

PURPOSE: A recently completed Phase I clinical trial combined concurrent Mitomycin-C chemotherapy with deep regional heating using BSD-2000 Sigma-Ellipse applicator (BSD Corporation, Salt Lake City, UT, U.S.A.) for the treatment of nonmuscle invasive bladder cancer. This work presents a new treatment planning approach, and demonstrates potential impact of this approach on improvement of treatment quality. METHODS: This study retrospectively analyzes a subset of five patients on the trial. For each treatment, expert operators selected "clinical-optimal" settings based on simple model calculation on the BSD-2000 control console. Computed tomography (CT) scans acquired prior to treatment were segmented to create finite element patient models for retrospective simulations with Sigma-HyperPlan (Dr. Sennewald Medizintechnik GmbH, Munchen, Germany). Since Sigma-HyperPlan does not account for the convective nature of heat transfer within a fluid filled bladder, an effective thermal conductivity for bladder was introduced. This effective thermal conductivity value was determined by comparing simulation results with clinical measurements of bladder and rectum temperatures. Regions of predicted high temperature in normal tissues were compared with patient complaints during treatment. Treatment results using "computed-optimal" settings from the planning system were compared with clinical results using clinical-optimal settings to evaluate potential of treatment improvement by reducing hot spot volume. RESULTS: For all five patients, retrospective treatment planning indicated improved matches between simulated and measured bladder temperatures with increasing effective thermal conductivity. The differences were mostly within 1.3 °C when using an effective thermal conductivity value above 10 W/K/m. Changes in effective bladder thermal conductivity affected surrounding normal tissues within a distance of ∼1.5 cm from the bladder wall. Rectal temperature differences between simulation and measurement were large due to sensitivity to the sampling locations in rectum. The predicted bladder T90 correlated well with single-point bladder temperature measurement. Hot spot locations predicted by the simulation agreed qualitatively with patient complaints during treatment. Furthermore, comparison between the temperature distributions with clinical and computed-optimal settings demonstrated that the computed-optimal settings resulted in substantially reduced hot spot volumes. CONCLUSIONS: Determination of an effective thermal conductivity value for fluid filled bladder was essential for matching simulation and treatment temperatures. Prospectively planning patients using the effective thermal conductivity determined in this work can potentially improve treatment efficacy (compared to manual operator adjustments) by potentially lower discomfort from reduced hot spots in normal tissue.


Assuntos
Hipertermia Induzida/métodos , Neoplasias da Bexiga Urinária/terapia , Campos Eletromagnéticos , Humanos , Estudos Retrospectivos , Temperatura , Neoplasias da Bexiga Urinária/tratamento farmacológico
13.
Int J Hyperthermia ; 28(5): 456-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22690856

RESUMO

PURPOSE: Novel combinations of heat with chemotherapeutic agents are often studied in murine tumour models. Currently, no device exists to selectively heat small tumours at depth in mice. In this project we modelled, built and tested a miniature microwave heat applicator, the physical dimensions of which can be scaled to adjust the volume and depth of heating to focus on the tumour volume. Of particular interest is a device that can selectively heat murine bladder. MATERIALS AND METHODS: Using Avizo(®) segmentation software, we created a numerical mouse model based on micro-MRI scan data. The model was imported into HFSS™ (Ansys) simulation software and parametric studies were performed to optimise the dimensions of a water-loaded circular waveguide for selective power deposition inside a 0.15 mL bladder. A working prototype was constructed operating at 2.45 GHz. Heating performance was characterised by mapping fibre-optic temperature sensors along catheters inserted at depths of 0-1 mm (subcutaneous), 2-3 mm (vaginal), and 4-5 mm (rectal) below the abdominal wall, with the mid depth catheter adjacent to the bladder. Core temperature was monitored orally. RESULTS: Thermal measurements confirm the simulations which demonstrate that this applicator can provide local heating at depth in small animals. Measured temperatures in murine pelvis show well-localised bladder heating to 42-43°C while maintaining normothermic skin and core temperatures. CONCLUSIONS: Simulation techniques facilitate the design optimisation of microwave antennas for use in pre-clinical applications such as localised tumour heating in small animals. Laboratory measurements demonstrate the effectiveness of a new miniature water-coupled microwave applicator for localised heating of murine bladder.


Assuntos
Hipertermia Induzida/métodos , Micro-Ondas , Modelos Teóricos , Bexiga Urinária , Animais , Temperatura Corporal , Simulação por Computador , Feminino , Camundongos , Camundongos Endogâmicos C57BL
14.
Int J Hyperthermia ; 28(5): 431-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22804741

RESUMO

PURPOSE: It is unknown whether a thermal dose should be administered using a few large fractions with higher temperatures or a larger number of fractions with lower temperatures. To evaluate this we assessed the effect of administering the same total thermal dose, approximately 30 CEM43T(90), in one versus three to four fractions per week, over 5 weeks. MATERIALS AND METHODS: Canine sarcomas were randomised to receive one of the hyperthermia fractionation schemes along with fractionated radiotherapy. Tumour response was based on changes in tumour volume, oxygenation, water diffusion quantified using MRI, and a panel of histological and immunohistochemical end points. RESULTS: There was a greater reduction in tumour volume and water diffusion at the end of therapy in tumours receiving one hyperthermia fraction per week. There was a weak but significant association between improved tumour oxygenation 24 h after the first hyperthermia treatment and extent of volume reduction at the end of therapy. Finally, the direction of change of HIF-1α and CA-IX immunoreactivity after the first hyperthermia fraction was similar and there was an inverse relationship between temperature and the direction of change of CA-IX. There were no significant changes in interstitial fluid pressure, VEGF, vWF, apoptosis or necrosis as a function of treatment group or temperature. CONCLUSIONS: We did not identify an advantage to a three to four per week hyperthermia prescription, and response data pointed to a one per week prescription being superior.


Assuntos
Hipertermia Induzida , Sarcoma/terapia , Neoplasias de Tecidos Moles/terapia , Animais , Antígenos de Neoplasias/metabolismo , Anidrases Carbônicas/metabolismo , Caspase 3/metabolismo , Cães , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sarcoma/metabolismo , Sarcoma/patologia , Neoplasias de Tecidos Moles/metabolismo , Neoplasias de Tecidos Moles/patologia , Carga Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
J Appl Clin Med Phys ; 13(5): 3845, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22955650

RESUMO

A thermobrachytherapy surface applicator (TBSA) was developed for simultaneous heat and brachytherapy treatment of chest wall (CW) recurrence of breast cancer. The ability to comfortably secure the applicator over the upper torso relative to the CW target throughout treatment is assessed on volunteers. Male and postmastectomy female volunteers were enrolled to evaluate applicator secure fit to CW. Female subjects with intact breast were also enrolled to assess the ability to treat challenging cases. Magnetic resonance (MR) images of volunteers wearing a TBSA over the upper torso were acquired once every 15 minutes for 90 minutes. Applicator displacement over this time period required for treatment preplanning and delivery was assessed using MR visible markers. Applicator comfort and tolerability were assessed using a questionnaire. Probability estimates of applicator displacements were used to investigate dosimetric impact for the worst-case variation in radiation source-to-skin distance for 5 and 10 mm deep targets spread 17 × 13 cm on a torso phantom. Average and median displacements along lateral and radial directions were less than 1.2 mm over 90 minutes for all volunteers. Maximum lateral and radial displacements were measured to be less than 1 and 1.5 mm, respectively, for all CW volunteers and less than 2 mm for intact breast volunteers, excluding outliers. No complaint of pain or discomfort was reported. Phantom treatment planning for the maximum displacement of 2 mm indicated < 10% increase in skin dose with < 5% loss of homogeneity index (HI) for -2 mm uniform HDR source displacement. For +2 mm uniform displacement, skin dose decreased and HI increased by 20%. The volunteer study demonstrated that such large and uniform displacements should be rare for CW subjects, and the measured variation is expected to be low for multifraction conformal brachytherapy treatment.


Assuntos
Braquiterapia/instrumentação , Neoplasias da Mama/terapia , Hipertermia Induzida , Recidiva Local de Neoplasia/terapia , Posicionamento do Paciente , Algoritmos , Braquiterapia/métodos , Relação Dose-Resposta à Radiação , Feminino , Temperatura Alta , Humanos , Masculino , Imagens de Fantasmas , Dosagem Radioterapêutica , Pele/efeitos da radiação , Parede Torácica/efeitos da radiação
16.
Int J Hyperthermia ; 27(1): 86-99, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21070140

RESUMO

PURPOSE: This article explores the feasibility of using coupled electromagnetic and thermodynamic simulations to improve planning and control of hyperthermia treatments for cancer. The study investigates the usefulness of preplanning to improve heat localisation in tumour targets in treatments monitored with PRFS-based magnetic resonance thermal imaging (MRTI). METHODS: Heating capabilities of a cylindrical radiofrequency (RF) mini-annular phased array (MAPA) applicator were investigated with electromagnetic and thermal simulations of SAR in homogeneous phantom models and two human leg sarcomas. High frequency structure simulator (HFSS) (Ansoft) was used for electromagnetic simulations and SAR patterns were coupled into EPhysics (Ansoft) for thermal modelling with temperature-dependent variable perfusion. Simulations were accelerated by integrating tumour-specific anatomy into a pre-gridded whole body tissue model. To validate this treatment planning approach, simulations were compared with MR thermal images in both homogenous phantoms and heterogeneous tumours. RESULTS: SAR simulations demonstrated excellent agreement with temperature rise distributions obtained with MR thermal imaging in homogeneous phantoms and clinical treatments of large soft-tissue sarcomas. The results demonstrate feasibility of preplanning appropriate relative phases of antennas for localising heat in tumour. CONCLUSIONS: Advances in the accuracy of computer simulation and non-invasive thermometry via MR thermal imaging have provided powerful new tools for optimisation of clinical hyperthermia treatments. Simulations agree well with MR thermal images in both homogeneous tissue models and patients with lower leg tumours. This work demonstrates that better quality hyperthermia treatments should be possible when simplified hybrid model simulations are performed routinely as part of the clinical pretreatment plan.


Assuntos
Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Sarcoma/terapia , Simulação por Computador , Fenômenos Eletromagnéticos , Humanos , Planejamento de Assistência ao Paciente , Temperatura
17.
Nanophotonics ; 10(12): 3295-3302, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36405500

RESUMO

Cancer is the second leading cause of death and there is an urgent need to improve cancer management. We have developed an innovative cancer therapy named Synergistic Immuno Photothermal Nanotherapy (SYMPHONY) by combining gold nanostars (GNS)-mediated photothermal ablation with checkpoint inhibitor immunotherapy. Our previous studies have demonstrated that SYMPHONY photoimmunotherapy not only treats the primary tumor but also dramatically amplifies anticancer immune responses in synergy with checkpoint blockade immunotherapy to treat remote and unresectable cancer metastasis. The SYMPHONY treatment also induces a 'cancer vaccine' effect leading to immunologic memory and prevents cancer recurrence in murine animal models. This manuscript provides an overview of our research activities on the SYMPHONY therapy with plasmonic GNS for cancer treatment.

18.
Int J Hyperthermia ; 26(7): 686-98, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20849262

RESUMO

PURPOSE: This article summarises the evolution of microwave array applicators for heating large area chest wall disease as an adjuvant to external beam radiation, systemic chemotherapy, and potentially simultaneous brachytherapy. METHODS: Current devices used for thermotherapy of chest wall recurrence are reviewed. The largest conformal array applicator to date is evaluated in four studies: (1) ability to conform to the torso is demonstrated with a CT scan of a torso phantom and MR scan of the conformal water bolus component on a mastectomy patient; (2) specific absorption rate (SAR) and temperature distributions are calculated with electromagnetic and thermal simulation software for a mastectomy patient; (3) SAR patterns are measured with a scanning SAR probe in liquid muscle phantom for a buried coplanar waveguide CMA; and (4) heating patterns and patient tolerance of CMA applicators are characterised in a clinical pilot study with 13 patients. RESULTS: CT and MR scans demonstrate excellent conformity of CMA applicators to contoured anatomy. Simulations demonstrate effective control of heating over contoured anatomy. Measurements confirm effective coverage of large treatment areas with no gaps. In 42 hyperthermia treatments, CMA applicators provided well-tolerated effective heating of up to 500 cm(2) regions, achieving target temperatures of T(min) = 41.4 ± 0.7°C, T(90) = 42.1 ± 0.6°C, T(ave) = 42.8 ± 0.6°C, and T(max) = 44.3 ± 0.8°C as measured in an average of 90 points per treatment. CONCLUSION: The CMA applicator is an effective thermal therapy device for heating large-area superficial disease such as diffuse chest wall recurrence. It is able to cover over three times the treatment area of conventional hyperthermia devices while conforming to typical body contours.


Assuntos
Neoplasias da Mama/terapia , Hipertermia Induzida , Micro-Ondas , Parede Torácica/patologia , Neoplasias da Mama/patologia , Feminino , Humanos , Recidiva
19.
Med Phys ; 36(11): 4848-58, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19994492

RESUMO

PURPOSE: To establish accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. METHODS: Protocol patients with advanced extremity sarcomas were treated with external beam radiation therapy and hyperthermia. Invasive temperature measures were compared to noninvasive magnetic resonance thermal imaging (MRTI) at 1.5 T performed during hyperthermia. Volumetric temperature rise images were obtained using the proton resonance frequency shift (PRFS) technique during heating in a 140 MHz miniannular phased array applicator. MRTI temperature changes were compared to invasive measurements of temperature with a multisensor fiber optic probe inside a #15 g catheter in the tumor. Since the PRFS technique is sensitive to drifts in the primary imaging magnetic field, temperature change distributions were corrected automatically during treatment using temperature-stable reference materials to characterize field changes in 3D. The authors analyzed MRT images and compared, in evaluable treatments, MR-derived temperatures to invasive temperatures measured in extremity sarcomas. Small regions of interest (ROIs) were specified near each invasive sensor identified on MR images. Temperature changes in the interstitial sensors were compared to the corresponding ROI PRFS-based temperature changes over the entire treatment and over the steady-state period. Nonevaluable treatments (motion/imaging artifacts, noncorrectable drifts) were not included in the analysis. RESULTS: The mean difference between MRTI and interstitial probe measurements was 0.91 degrees C for the entire heating time and 0.85 degrees C for the time at steady state. These values were obtained from both tumor and normal tissue ROIs. When the analysis is done on just the tumor ROIs, the mean difference for the whole power on time was 0.74 degrees C and during the period of steady state was 0.62 degrees C. CONCLUSIONS: The data show that for evaluable treatments, excellent correlation (deltaT < 1 degrees C) of MRTI-ROI and invasive measurements can be achieved, but that motion and other artifacts are still serious challenges that must be overcome in future work.


Assuntos
Temperatura Corporal , Hipertermia Induzida , Imageamento por Ressonância Magnética , Sarcoma/terapia , Termografia/métodos , Cateterismo , Terapia Combinada , Tecnologia de Fibra Óptica/métodos , Humanos , Estadiamento de Neoplasias , Prótons , Estudos Retrospectivos , Sarcoma/diagnóstico , Sarcoma/radioterapia , Fatores de Tempo
20.
Phys Med Biol ; 54(13): 3937-53, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19494426

RESUMO

This paper investigates both numerically and experimentally the spatio-temporal effects of water flow in a custom-made water bolus used for superficial hyperthermia generated by a 915-MHz, 4 x 3 microwave applicator array. Similar hyperthermia models referenced in the literature use a constant water temperature and uniform heat flux to describe conduction and convection energy exchange within the heating apparatus available to cool the tissue surface. The results presented in this paper show that the spatially varying flow pattern and rate are vital factors for the overall heat control applicability of the 5 mm thick bolus under study. Regions with low flow rates and low heat convection clearly put restrictions on the maximum microwave energy possible within the limits of skin temperature rise under the bolus. Our analysis is illustrated by experimental flow front studies using a contrast liquid set-up monitored by high definition video and complemented by numerical analysis of liquid flow and heat exchange within the rectangular water bolus loaded by malignant tissue. Important factors for the improvement of future bolus designs are also discussed in terms of diameter and configuration of the water input and output tubing network.


Assuntos
Hipertermia Induzida/instrumentação , Hipertermia Induzida/métodos , Micro-Ondas/uso terapêutico , Reologia/instrumentação , Reologia/métodos , Água , Desenho Assistido por Computador , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura Alta , Condutividade Térmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA