Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047721

RESUMO

Resolvin E1 (RvE1) is an eicosapentaenoic acid-derived lipid mediator involved in the resolution of inflammation. Here, we investigated whether RvE1 alterations may occur in an animal model of age-related macular degeneration (AMD). To this end, Sprague Dawley albino rats underwent light damage (LD), and retinas and serum were analyzed immediately or seven days after treatment. Western blot of retinas showed that the RvE1 receptor ChemR23 and the RvE1 metabolic enzymes 5-LOX and COX-2 were unchanged immediately after LD, but they were significantly up-regulated seven days later. Instead, the RvE1 receptor BLT1 was not modulated by LD, and neither was the RvE1 degradative enzyme 15-PGDH. Moreover, ChemR23, 5-LOX, COX-2 and BLT1 were found to be more expressed in the inner retina under all experimental conditions, as observed through ImageJ plot profile analysis. Of note, amacrine cells highly expressed BLT1, while ChemR23 was highly expressed in the activated microglia of the outer retina. ELISA assays also showed that LD rats displayed significantly higher circulating levels and reduced retinal levels of RvE1 compared to controls. Altogether, our data indicate that RvE1 metabolism and signaling are modulated in the LD model, suggesting a potentially relevant role of this pathway in AMD.


Assuntos
Ácido Eicosapentaenoico , Degeneração Macular , Animais , Ratos , Ciclo-Oxigenase 2 , Ratos Sprague-Dawley , Degeneração Macular/etiologia
2.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499098

RESUMO

Opposing dose-dependent effects of curcumin (Cur) have been documented in Retinal Pigment Epithelium (RPE); therefore, to shed the light on the mechanisms of action is crucial for ophthalmic applications. On this basis we explored new insights about the dose-dependent mechanisms triggered by Cur in human retinal pigment epithelial cells (ARPE-19). Three concentrations (0.01 mM; 0.05 mM; 0.1 mM) of Cur were tested, followed by morphological, molecular, and functional analysis of the cells. Cur 0.01 mM promotes a significant increase in cell proliferation, not affecting cell cycle progression and apoptosis; by contrast, Cur 0.05 mM and 0.1 mM block cellular proliferation and trigger S-phase cell cycle arrest without inducing apoptosis. The observation of neuronal-like morphological changes in Cur 0.05 mM and 0.1 mM were not associated with neuronal differentiation, as observed by the quantification of Neurofilament-200 and by the analysis of voltage-dependent currents by patch clamp. Evaluation of autophagic markers LC3BII and p62 revealed significant modulations, suggesting an important activation of autophagy in ARPE-19 cells treated with Cur 0.05 mM and Cur 0.1 mM; conversely, Cur 0.01 mM did not affect autophagy. Altogether, our findings show new dose-dependent mechanisms of action of Cur that suggest a wide therapeutic application in ocular diseases with different pathogenesis (i.e., proliferative vitreoretinopathy or Age-Related Macular Degeneration).


Assuntos
Curcumina , Humanos , Curcumina/farmacologia , Curcumina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Autofagia , Apoptose , Proliferação de Células
3.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153070

RESUMO

Merkel cell carcinomas (MCCs) are rare, aggressive, cutaneous neuroendocrine tumours, approximately 80% of which are caused by the genomic integration of Merkel cell polyomavirus (MCPyV). MCPyV-positive MCCs carry poor prognosis in approximately 70% of cases, highlighting the need for greater understanding of the oncogenic mechanisms involved in pathogenesis, progression and post-therapeutic relapse, and translation into novel therapeutic strategies. In a previous pilot study, we reported a potential relationship between MCPyV gene expression and oncogenic alternative Δ exon 6-7 TrkAIII splicing in formalin-fixed paraffin-embedded (FFPE) MCC tissues from a 12-patient cohort of >90% MCPyV-positive MCCs, diagnosed at San Salvatore Hospital, L'Aquila, Italy, characterising a new MCC subgroup and unveiling a novel potential MCPyV oncogenic mechanism and therapeutic target. This, however, could not be fully verified due to poor RNA quality and difficulty in protein extraction from FFPE tissues. Here, therefore, we extend our previous observations to confirm the relationship between MCPyV and oncogenic alternative Δ exon 6-7 TrkAIII splicing in fresh, nonfixed, MCPyV-positive MCC metastasis by detecting sequence-verified RT-PCR products, including full-length Δ exon 6-7 TrkAIII, and by Western blot detection of a 100 kDa TrkA protein isoform of identical size to 100 kDa Δ exon 6-7 TrkAIII expressed by stable transfected SH-SY5Y cells. We also report that in three MCC patients submitted for multidisciplinary treatment, including locoregional chemotherapy, MCPyV large T-antigen mRNA expression, Δ exon 6-7 TrkAIII mRNA expression and intracellular indirect immunofluorescence (IF) TrkA and phosphorylation protein isoform(s) immunoreactivity in FFPE tissues were not reduced in postchemotherapeutic-relapsed MCCs compared to pretherapeutic MCCs, extending the possible roles of this novel potential MCPyV oncogenic mechanism from MCC pathogenesis to post-therapeutic relapse and progression. Detection of alternative Δ exon 6-7 TrkAIII splicing in MCC, therefore, not only characterises a new MCPyV-positive MCC subgroup and unveils a novel potential MCPyV oncogenic mechanism but also identifies patients who may benefit from inhibitors of MCPyV T-antigen and/or TrkAIII expression or clinically approved Trk kinase inhibitors such as larotrectinib or entrectinib, which are known to inhibit activated TrkA oncogenes and to elicit durable responses in TrkA-fusion oncogene-driven cancers, supporting the call for a large-scale multicentre clinical study.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carcinoma de Célula de Merkel , Infecções por Polyomavirus , Receptor trkA/genética , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo/genética , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Carcinoma de Célula de Merkel/diagnóstico , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/mortalidade , Carcinoma de Célula de Merkel/terapia , Transformação Celular Neoplásica/genética , Terapia Combinada , Vias de Administração de Medicamentos , Feminino , Humanos , Comunicação Interdisciplinar , Itália/epidemiologia , Masculino , Poliomavírus das Células de Merkel/isolamento & purificação , Poliomavírus das Células de Merkel/fisiologia , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Mutação , Equipe de Assistência ao Paciente , Infecções por Polyomavirus/diagnóstico , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/mortalidade , Infecções por Polyomavirus/terapia , Prognóstico , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/terapia , Análise de Sobrevida , Infecções Tumorais por Vírus/diagnóstico , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/mortalidade , Infecções Tumorais por Vírus/terapia
4.
Nat Mater ; 16(6): 681-689, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28250420

RESUMO

The degeneration of photoreceptors in the retina is one of the major causes of adult blindness in humans. Unfortunately, no effective clinical treatments exist for the majority of retinal degenerative disorders. Here we report on the fabrication and functional validation of a fully organic prosthesis for long-term in vivo subretinal implantation in the eye of Royal College of Surgeons rats, a widely recognized model of retinitis pigmentosa. Electrophysiological and behavioural analyses reveal a prosthesis-dependent recovery of light sensitivity and visual acuity that persists up to 6-10 months after surgery. The rescue of the visual function is accompanied by an increase in the basal metabolic activity of the primary visual cortex, as demonstrated by positron emission tomography imaging. Our results highlight the possibility of developing a new generation of fully organic, highly biocompatible and functionally autonomous photovoltaic prostheses for subretinal implants to treat degenerative blindness.


Assuntos
Cegueira/fisiopatologia , Cegueira/terapia , Compostos Orgânicos , Recuperação de Função Fisiológica , Visão Ocular , Próteses Visuais , Animais , Modelos Animais de Doenças , Ratos
5.
Vis Neurosci ; 31(4-5): 355-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24819927

RESUMO

Age-related macular degeneration (AMD) is a retinal neurodegenerative disease whose development and progression are the results of a complex interaction between genetic and environmental risk factors. Both oxidative stress and chronic inflammation play a significant role in the pathogenesis of AMD. Experimental studies in rats with light-induced photoreceptors degeneration demonstrated that saffron may protect photoreceptor from retinal stress, preserving both morphology and function and probably acting as a regulator of programmed cell death, in addition to its antioxidant and anti-inflammatory properties. Recently, a randomized clinical trial showed that in patients with early AMD, dietary supplementation with saffron was able to improve significantly the retinal flicker sensitivity suggesting neuroprotective effect of the compound. Here, we examine the progress of saffron dietary supplementation both in animal model and AMD patients, and discuss the potential and safety for using dietary saffron to treat retinal degeneration.


Assuntos
Crocus , Degeneração Macular/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/farmacocinética , Retina/efeitos dos fármacos , Animais , Humanos , Degeneração Macular/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Fitoterapia , Retina/metabolismo
6.
Rev Neurosci ; 35(3): 303-330, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38153807

RESUMO

Age-related macular degeneration (AMD) is a complex, multifactorial disease leading to progressive and irreversible retinal degeneration, whose pathogenesis has not been fully elucidated yet. Due to the complexity and to the multiple features of the disease, many efforts have been made to develop animal models which faithfully reproduce the overall AMD hallmarks or that are able to mimic the different AMD stages. In this context, light damage (LD) rodent models of AMD represent a suitable and reliable approach to mimic the different AMD forms (dry, wet and geographic atrophy) while maintaining the time-dependent progression of the disease. In this review, we comprehensively reported how the LD paradigms reproduce the main features of human AMD. We discuss the capability of these models to broaden the knowledge in AMD research, with a focus on the mechanisms and the molecular hallmarks underlying the pathogenesis of the disease. We also critically revise the remaining challenges and future directions for the use of LD models.


Assuntos
Degeneração Macular , Animais , Humanos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/patologia
7.
Biology (Basel) ; 13(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534441

RESUMO

Pituitary neuroendocrine tumors (PitNETs) are generally benign but comprise an aggressive, invasive, therapy-resistant, metastatic subset, underpinning a need for novel therapeutic targets. PitNETs exhibit low mutation rates but are associated with conditions linked to alternative splicing, an alternative oncogene pathway activation mechanism. PitNETs express the neurotrophin receptor TrkA, which exhibits oncogenic alternative TrkAIII splicing in other neuroendocrine tumors. We, therefore, assessed whether TrkAIII splicing represents a potential oncogenic participant in PitNETs. TrkAIII splicing was RT-PCR assessed in 53 PitNETs and TrkA isoform(s) expression and activation were assessed by confocal immunofluorescence. TrkAIII splicing was also compared to HIF1α, HIF2α, SF3B1, SRSF2, U2AF1, and JCPyV large T antigen mRNA expression, Xbp1 splicing, and SF3B1 mutation. TrkAIII splicing was detected in all invasive and most non-invasive PitNETs and was significantly elevated in invasive cases. In PitNET lineages, TrkAIII splicing was significantly elevated in invasive PIT1 PitNETs and high in invasive and non-invasive SF1 and TPIT lineages. Immunoreactivity consistent with TrkAIII activation characterized PitNET expressing TrkAIII mRNA, and invasive Pit1 PitNETs exhibited elevated HIF2α expression. TrkAIII splicing did not associate with SF3B1 mutations, altered SF3B1, SRSF2, and U2AF1 or JCPyV large T antigen expression, or Xbp1 splicing. Therefore, TrkAIII splicing is common in PitNETs, is elevated in invasive, especially PIT1 tumors, can result in intracellular TrkAIII activation, and may involve hypoxia. The data support a role for TrkAIII splicing in PitNET pathogenesis and progression and identify TrkAIII as a novel potential target in refractory PitNETs.

8.
J Transl Med ; 11: 228, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24067115

RESUMO

BACKGROUND: To determine whether the functional effects of oral supplementation with Saffron, a natural compound that proved to be neuroprotective in early age-related macular degeneration, are influenced by complement factor H (CFH) and age-related maculopathy susceptibility 2 (ARMS2) risk genotypes. METHODS: Thirty-three early AMD patients, screened for CFH (rs1061170) and ARMS2 (rs10490924) polymorphisms and receiving Saffron oral supplementation (20 mg/day) over an average period of treatment of 11 months (range, 6-12), were longitudinally evaluated by clinical examination and focal electroretinogram (fERG)-derived macular (18°) flicker sensitivity estimate. fERG amplitude and macular sensitivity, the reciprocal value of the estimated fERG amplitude threshold, were the main outcome measures. RESULTS: After three months of supplementation, mean fERG amplitude and fERG sensitivity improved significantly when compared to baseline values (p < 0.01). These changes were stable throughout the follow-up period. No significant differences in clinical and fERG improvements were observed across different CFH or ARMS2 genotypes. CONCLUSIONS: The present results indicate that the functional effect of Saffron supplementation in individual AMD patients is not related to the major risk genotypes of disease.


Assuntos
Crocus/química , Suplementos Nutricionais , Predisposição Genética para Doença , Degeneração Macular/tratamento farmacológico , Degeneração Macular/genética , Extratos Vegetais/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Fator H do Complemento/genética , Demografia , Eletrorretinografia , Feminino , Heterozigoto , Humanos , Degeneração Macular/fisiopatologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Fatores de Risco
9.
Cells ; 12(2)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672171

RESUMO

Post-therapeutic relapse, poor survival rates and increasing incidence justify the search for novel therapeutic targets and strategies in cutaneous malignant melanoma (CMM). Within this context, a potential oncogenic role for TrkA in CMM is suggested by reports of NTRK1 amplification, enhanced TrkA expression and intracellular TrkA activation associated with poor prognosis. TrkA, however, exhibits tumour-suppressing properties in melanoma cell lines and has recently been reported not to be associated with CMM progression. To better understand these contradictions, we present the first analysis of potential oncogenic alternative TrkA mRNA splicing, associated with TrkA immunoreactivity, in CMMs, and compare the behaviour of fully spliced TrkA and the alternative TrkAIII splice variant in BRAF(V600E)-mutated A375 melanoma cells. Alternative TrkA splicing in CMMs was associated with unfolded protein response (UPR) activation. Of the several alternative TrkA mRNA splice variants detected, TrkAIII was the only variant with an open reading frame and, therefore, oncogenic potential. TrkAIII expression was more frequent in metastatic CMMs, predominated over fully spliced TrkA mRNA expression in ≈50% and was invariably linked to intracellular phosphorylated TrkA immunoreactivity. Phosphorylated TrkA species resembling TrkAIII were also detected in metastatic CMM extracts. In A375 cells, reductive stress induced UPR activation and promoted TrkAIII expression and, in transient transfectants, promoted TrkAIII and Akt phosphorylation, enhancing resistance to reductive stress-induced death, which was prevented by lestaurtinib and entrectinib. In contrast, fully spliced TrkA was dysfunctional in A375 cells. The data identify fully spliced TrkA dysfunction as a novel mechanism for reducing melanoma suppression, support a causal relationship between reductive stress, UPR activation, alternative TrkAIII splicing and TrkAIII activation and characterise a targetable oncogenic pro-survival role for TrkAIII in CMM.


Assuntos
Melanoma , Neuroblastoma , Humanos , Neuroblastoma/genética , Receptor trkA/genética , Receptor trkA/metabolismo , Recidiva Local de Neoplasia , Processamento Alternativo/genética , Melanoma/genética , Melanoma Maligno Cutâneo
10.
Biomedicines ; 10(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36428503

RESUMO

The mammalian target of rapamycin (mTOR) signaling plays a critical role in cell homeostasis, growth and survival. Here, we investigated the localization of the main mTOR signaling proteins in the organ of Corti of normal-hearing and deafened guinea pigs, as well as their possible modulation by exogenously administered brain-derived neurotrophic factor (BDNF) in deafened guinea pigs. Animals were ototoxically deafened by systemic administration of kanamycin and furosemide, and one week later, the right cochleas were treated with gelatin sponge soaked in rhBDNF, while the left cochleas were used as negative controls. Twenty-four hours after treatment, animals were euthanized, and the cochleas were processed for subsequent analysis. Through immunofluorescence, we demonstrated the localization of AKT, pAKT, mTOR, pmTOR and PTEN proteins throughout the cochlea of guinea pigs for the first time, with a higher expression in supporting cells. Moreover, an increase in mTOR immunostaining was observed in BDNF-treated cochleas by means of fluorescence intensity compared to the other groups. Conversely, Western blot analysis showed no significant differences in the protein levels between groups, probably due to dilution of proteins in the neighboring tissues of the organ of Corti. Altogether, our data indicate that mTOR signaling proteins are expressed by the organ of Corti (with a major role for supporting cells) and that the modulation of mTOR may be a protective mechanism triggered by BDNF in the degenerating organ of Corti.

11.
J Ocul Pharmacol Ther ; 38(1): 56-65, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34889660

RESUMO

Purpose: Recent studies have shown the presence of SARS-CoV-2 entry factors on the ocular surface, identifying the eye as an additional entry route for the virus. Moreover, the coexpression of angiotensin-converting enzyme 2 (ACE2) with other SARS-CoV-2 entry factors [transmembrane protease serine 2 (TMPRSS2), transmembrane protease serine 4 (TMPRSS4), and dipeptidyl peptidase-4 (DPP4)] facilitates the virus infection. Methods: Here, we performed a study over 10 adult corneal and limbal tissues from human donors, both male and female between 58 and 85 years of age. Some of the main virus entry factors were analyzed and their expression was quantified and correlated with the age and sex of the donors through western blot. The receptors' localization was investigated through immunofluorescence. Results: Immunofluorescence confirmed the localization of ACE2 and TMPRSS2 on the ocular surface and showed, for the first time, the localization of TMPRSS4 and DPP4 in limbal and corneal epithelial superficial cells. The quantitative analysis showed that the expression of SARS-CoV-2 entry factors on corneal and limbal cells is likely to be modulated in an age-dependent manner, in agreement with the increased susceptibility to COVID-19 in the elderly. Moreover, we found a relationship between the expression of TMPRSS proteases with the activation state of limbal cells in 80-year-old donors. Conclusion: This study provides information on the expression of SARS-CoV-2 entry factors on the ocular surface of 10 adult human donors and is a first observation of a possible age-dependent modulation on corneal and limbal tissues. Our data pave the way to further investigate the susceptibility to the infection through the ocular surface in the elderly.


Assuntos
Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/virologia , Córnea/metabolismo , Córnea/virologia , SARS-CoV-2/metabolismo , Internalização do Vírus , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Feminino , Regulação Viral da Expressão Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Serina Endopeptidases/metabolismo
12.
Oxid Med Cell Longev ; 2022: 8923615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941902

RESUMO

Retinal degeneration is the major and principal cause behind many incurable blindness diseases. Several studies indicated the neuroprotective effect of Curcuma longa in eye pathologies, specifically retinopathy. However, the molecular mechanism behind its effect has not been completely elucidated. Using an ex vivo model of retinal degeneration obtained from an ex vivo optic nerve cut (ONC), we demonstrated that Curcuma extract (Cur) exerted a neuroprotective effect. Importantly, Cur was able to modulate apoptosis and MAPK signaling pathway activation and prevent retinal ganglion cell (RGC) loss. Other well-known neuroprotective pharmacological tools, including memantine (Mem), citicoline (Cit), and ginkgolic acid (GA), were used to compare the potential mechanisms of Cur. The antioxidant activity of retinas treated with Cur following optic nerve cut was significantly higher than control, but Cur failed to change the retina glutamate content. Considering the antioxidant effect of Cur and taking advantage of our recent findings on the crosstalk between oxidative stress and post-translational protein modifiers, in particular, small ubiquitin-related modifier (SUMO), we were interested in exploring the effect of Cur on SUMOylation. We found that Cur significantly prevented the increase of protein SUMOylation, confirming our previous in vitro data indicating the cytoprotective effect of curcumin through modulating the oxidative stress and SUMO-JNK axis. Altogether, these results suggest that Curcuma protects the retina from degeneration via antioxidant activity and targets SUMOylation. Therefore, it might be considered for the combination therapy with other neuroprotective agents with different mechanisms in preclinical studies on retinal degeneration.


Assuntos
Curcumina , Fármacos Neuroprotetores , Degeneração Retiniana , Antioxidantes/farmacologia , Curcuma , Curcumina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Degeneração Retiniana/tratamento farmacológico , Sumoilação
13.
Antioxidants (Basel) ; 11(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35740031

RESUMO

In this study, we investigated whether cerium oxide nanoparticles (CeO2-NPs), a promising antioxidant nanomaterial, may contrast retinal vascular alterations induced by oxidative damage in vitro and in vivo. For the in vivo experiments, the light damage (LD) animal model of Age-Related Macular Degeneration (AMD) was used and the CeO2-NPs were intravitreally injected. CeO2-NPs significantly decreased vascular endothelial growth factor (VEGF) protein levels, reduced neovascularization in the deep retinal plexus, and inhibited choroidal sprouting into the photoreceptor layer. The in vitro experiments were performed on human retinal pigment epithelial (ARPE-19) cells challenged with H2O2; we demonstrated that CeO2-NPs reverted H2O2-induced oxidative stress-dependent effects on this cell model. We further investigated the RPE-endothelial cells interaction under oxidative stress conditions in the presence or absence of CeO2-NPs through two experimental paradigms: (i) treatment of human umbilical vein endothelial cells (HUVECs) with conditioned media from ARPE-19 cells, and (ii) coculture of ARPE-19 and HUVECs. In both experimental conditions, CeO2-NPs were able to revert the detrimental effect of H2O2 on angiogenesis in vitro by realigning the level of tubule formation to that of the control. Altogether, our results indicate, for the first time, that CeO2-NPs can counteract retinal neovascularization and may be a new therapeutic strategy for the treatment of wet AMD.

14.
Cells ; 10(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406612

RESUMO

The blood retinal barrier (BRB) is a fundamental eye component, whose function is to select the flow of molecules from the blood to the retina and vice-versa, and its integrity allows the maintenance of a finely regulated microenvironment. The outer BRB, composed by the choriocapillaris, the Bruch's membrane, and the retinal pigment epithelium, undergoes structural and functional changes in age-related macular degeneration (AMD), the leading cause of blindness worldwide. BRB alterations lead to retinal dysfunction and neurodegeneration. Several risk factors have been associated with AMD onset in the past decades and oxidative stress is widely recognized as a key factor, even if the exact AMD pathophysiology has not been exactly elucidated yet. The present review describes the BRB physiology, the BRB changes occurring in AMD, the role of oxidative stress in AMD with a focus on the outer BRB structures. Moreover, we propose the use of cerium oxide nanoparticles as a new powerful anti-oxidant agent to combat AMD, based on the relevant existing data which demonstrated their beneficial effects in protecting the outer BRB in animal models of AMD.


Assuntos
Barreira Hematorretiniana/patologia , Barreira Hematorretiniana/fisiopatologia , Degeneração Macular/patologia , Degeneração Macular/fisiopatologia , Estresse Oxidativo , Animais , Modelos Animais de Doenças , Humanos , Nanopartículas/química
15.
Brain Res Bull ; 173: 184-192, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34051296

RESUMO

Parkinson's disease (PD) and diabetes mellitus share similar pathophysiological characteristics, genetic and environmental factors. It has been reported that people with diabetes mellitus appear to have a remarkable higher incidence of PD than age matched non diabetic individuals. Evidences suggest that use of antidiabetic glitazone is associated with a diminished risk of PD incidence in patients with diabetes. This study examined the effect of lobeglitazone, a member of thiazolidinedione class, in rat model of Parkinson's disease with diabetes co-morbidity. Rats received either rotenone and/or a combination of streptozocin and a high calorie diet for disease induction and they were treated with different doses of lobeglitazone or its vehicle. Behavioral tests comprising rotarod, bar test and rearing test were conducted to evaluate the motor function. Changes in the level tyrosine hydroxylase, TNF-α and NF-κB were analyzed using ELISA. In the same brain regions the possible changes in PPAR-γ receptor level were evaluated. Findings showed that although lobeglitazone tends to reverse the effect of rotenone in animals with diabetes, it was just able to prevent partly the motor defect in rearing test. Furthermore, lobeglitazone (1 mg/kg) reversed, in substantia nigra and striatum, the changes in tyrosine hydroxylase, TNF-α, NF-κB and PPAR-γ receptor content induced by rotenone in rats with diabetic condition. Although other preclinical studies are needed, these findings suggest that lobeglitazone is a promising neuroprotective candidate for clinical trials for PD patients with diabetes co-morbidity.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Hipoglicemiantes/farmacologia , Atividade Motora/efeitos dos fármacos , Destreza Motora/efeitos dos fármacos , Doença de Parkinson Secundária/fisiopatologia , Pirimidinas/farmacologia , Tiazolidinedionas/farmacologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Masculino , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/complicações , Ratos , Ratos Wistar , Rotenona
16.
Cell Death Discov ; 7(1): 394, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911931

RESUMO

Retinal ganglion cell (RGC) loss is a pathologic feature common to several retinopathies associated to optic nerve damage, leading to visual loss and blindness. Although several scientific efforts have been spent to understand the molecular and cellular changes occurring in retinal degeneration, an effective therapy to counteract the retinal damage is still not available. Here we show that eyeballs, enucleated with the concomitant optic nerve cut (ONC), when kept in PBS for 24 h showed retinal and optic nerve degeneration. Examining retinas and optic nerves at different time points in a temporal window of 24 h, we found a thinning of some retinal layers especially RGC's layer, observing a powerful RGC loss after 24 h correlated with an apoptotic, MAPKs and degradative pathways dysfunctions. Specifically, we detected a time-dependent increase of Caspase-3, -9 and pro-apoptotic marker levels, associated with a strong reduction of BRN3A and NeuN levels. Importantly, a powerful activation of JNK, c-Jun, and ERK signaling (MAPKs) were observed, correlated with a significant augmented SUMO-1 and UBC9 protein levels. The degradation signaling pathways was also altered, causing a significant decrease of ubiquitination level and an increased LC3B activation. Notably, it was also detected an augmented Tau protein level. Curcumin, a powerful antioxidant natural compound, prevented the alterations of apoptotic cascade, MAPKs, and SUMO-1 pathways and the degradation system, preserving the RGC survival and the retinal layer thickness. This ex vivo retinal degeneration model could be a useful method to study, in a short time window, the effect of neuroprotective tools like curcumin that could represent a potential treatment to contrast retinal cell death.

17.
Brain Sci ; 12(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35053747

RESUMO

We investigated whether treatment with brain-derived neurotrophic factor (BDNF), which is known to protect spiral ganglion cells (SGCs), could also protect hair cells (HCs) and supporting cells (SCs) in the organ of Corti of a guinea pig model of sensorineural hearing loss. Hearing loss was induced by administration of kanamycin/furosemide and two BDNF treatments were performed: (1) by gelatin sponge (BDNF-GS) with acute cochlear implantation (CI), and (2) through a mini-osmotic pump (BDNF-OP) with chronic CI. Outer HCs (OHCs), inner HCs (IHCs), Border, Phalangeal, Pillar, Deiters', and Hensen's cells were counted. The BDNF-GS cochleas had significantly fewer OHCs compared to the untreated ones, while the IHC and SC numbers did not differ between treated and untreated cochleas. The BDNF-OP group showed similar cell numbers to the untreated group. SGC packing density was not correlated with the total number of SCs for either BDNF group. Our data suggest that: (1) BDNF does not prevent cell death in the organ of Corti, and that the protection of SGCs could result from a direct targeting by BDNF; (2) BDNF might induce a different function/activity of the remaining cells in the organ of Corti (independently from cell number).

18.
J Ocul Pharmacol Ther ; 36(6): 376-383, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31891528

RESUMO

Cerium oxide nanoparticles (CeO2-NPs; or nanoceria) have been largely studied for biomedical applications due to their peculiar auto-regenerative antioxidant activity. This review focuses on ophthalmic applications of nanoceria. Many in vivo data indicate that nanoceria protect the retina from neurodegeneration. In particular, they have been tested in animal models of age-related macular degeneration and retinitis pigmentosa and their neuroprotective properties have been shown to persist for a long time, without any collateral effects. In vitro cytotoxicity studies have shown that CeO2-NPs could be safe for lens cells and could represent a new therapy for cataract treatment, but further studies are needed. To date, different pharmaceutical formulations based on nanoceria have been created looking at future clinical ophthalmic applications, such as water-soluble nanoceria, glycol chitosan-coated ceria nanoparticles (GCCNPs), and alginate-gelatin hydrogel loaded GCCNPs. GCCNPs were also effective in preventing choroidal neovascularization in vivo. Based on the nanosize of nanoceria, corneal permeation could be achieved to allow topical treatment of nanoceria. PEGylation and encapsulation in liposomes represent the main strategies to support corneal permeation, without altering nanoceria chemical-physical properties. Based on their great antioxidant properties, safety, and nanosize, nanoceria represent a new potential therapeutic for the treatment of several eye disorders.


Assuntos
Antioxidantes/farmacologia , Cério/administração & dosagem , Nanopartículas/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Retina/efeitos dos fármacos , Administração Oftálmica , Alginatos/metabolismo , Animais , Cério/química , Quitosana/metabolismo , Neovascularização de Coroide/prevenção & controle , Córnea/fisiologia , Composição de Medicamentos/métodos , Gelatina/metabolismo , Hidrogéis/metabolismo , Lipossomos/metabolismo , Degeneração Macular/prevenção & controle , Camundongos , Modelos Animais , Nanopartículas/química , Fármacos Neuroprotetores/administração & dosagem , Permeabilidade/efeitos dos fármacos , Ratos , Retina/patologia , Retinose Pigmentar/prevenção & controle , Segurança
19.
Cells ; 9(7)2020 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635502

RESUMO

Retinal pigment epithelium (RPE) dysfunction and degeneration underlie the development of age-related macular degeneration (AMD), which is the leading cause of blindness worldwide. In this study, we investigated whether cerium oxide nanoparticles (CeO2-NPs or nanoceria), which are anti-oxidant agents with auto-regenerative properties, are able to preserve the RPE. On ARPE-19 cells, we found that CeO2-NPs promoted cell viability against H2O2-induced cellular damage. For the in vivo studies, we used a rat model of acute light damage (LD), which mimics many features of AMD. CeO2-NPs intravitreally injected three days before LD prevented RPE cell death and degeneration and nanoceria labelled with fluorescein were found localized in the cytoplasm of RPE cells. CeO2-NPs inhibited epithelial-mesenchymal transition of RPE cells and modulated autophagy by the down-regulation of LC3B-II and p62. Moreover, the treatment inhibited nuclear localization of LC3B. Taken together, our study demonstrates that CeO2-NPs represent an eligible candidate to counteract RPE degeneration and, therefore, a powerful therapy for AMD.


Assuntos
Autofagia/efeitos dos fármacos , Cério/uso terapêutico , Degeneração Macular/prevenção & controle , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/toxicidade , Marcação In Situ das Extremidades Cortadas , Degeneração Macular/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Epitélio Pigmentado da Retina/metabolismo
20.
J Exp Clin Cancer Res ; 38(1): 424, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640749

RESUMO

BACKGROUND: Merkel cell carcinomas (MCCs) are rare, aggressive, therapeutically-challenging skin tumours that are increasing in incidence and have poor survival rates. The majority are caused by genomic Merkel cell polyomavirus (MCPyV) integration and MCPyV T-antigen expression. Recently, a potential oncogenic role for the tropomyosin-related tyrosine kinase A receptor (TrkA) has been proposed in MCC. Alternative TrkAIII splicing is a TrkA oncogenic activation mechanism that can be promoted by SV40 large T-antigen, an analogue of MCPyV large T-antigen. In this pilot study, therefore, we have evaluated TrkAIII splicing as a novel potential oncogenic mechanism and therapeutic target in MCPyV positive MCC. METHODS: Formalin-fixed paraffin-embedded MCC tissues, consisting of 10 stage IV, 1 stage IIIB, 1 stage IIB, 4 stage IIA and 2 stage I tumours, from patients diagnosed and treated from September 2006 to March, 2019, at the University of L'Aquila, L'Aquila, Italy, were compared to 3 primary basal cell carcinomas (BCCs), 3 primary squamous cell carcinomas (SCCs) and 2 normal skin samples by RT-PCR for MCPyV large T-antigen, small T-antigen, VP-1 expression and alternative TrkAIII splicing and by indirect IF for evidence of intracellular TrkA isoform expression and activation. RESULTS: 9 of 10 Recurrent stage IV MCCs were from patients (P.1-3) treated with surgery plus loco-regional Melphalan chemotherapy and remaining MMCs, including 1 stage IV tumour, were from patients treated with surgery alone (P. 4-11). All MCPyV positive MCCs exhibiting MCPyV large T-antigen expression (17 of 18MCCs, 90%) exhibited alternative TrkAIII mRNA splicing (100%), which was exclusive in a significant number and predominant (> 50%) in all stage IV MCCs and the majority of stage 1-III MCCs. MCCs with higher TrkAIII to 18S rRNA expression ratios also exhibited strong or intermediate immunoreactivity to anti-TrkA antibodies, consistent with cytoplasmic TrkAIII expression and activation. In contrast, the MCPyV negative MCC, BCCs, SCCs and normal skin tissues all exhibited exclusive fully-spliced TrkA mRNA expression, associated with variable immunoreactivity for non-phosphorylated but not phosphorylated TrkA. CONCLUSIONS: MCPyV positive MCCs but not MCPyV negative MCC, BCCs and SCCs exhibit predominant alternative TrkAIII splicing, with evidence of intracellular TrkAIII activation. This establishes a new potential MCC subset, unveils a novel potential MCPyV oncogenic mechanism and identifies TrkAIII as a novel potential therapeutic target in MCPyV positive MCC.


Assuntos
Receptor trkA/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Célula de Merkel , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA