Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Genet Mol Biol ; 45(3): e20220065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36218381

RESUMO

The Protist kingdom individuals are the most ancestral representatives of eukaryotes. They have inhabited Earth since ancient times and are currently found in the most diverse environments presenting a great heterogeneity of life forms. The unicellular and multicellular algae, photosynthetic and heterotrophic organisms, as well as free-living and pathogenic protozoa represents the protist group. The evolution of sex is directly associated with the origin of eukaryotes being protists the earliest protagonists of sexual reproduction on earth. In eukaryotes, the recombination through genetic exchange is a ubiquitous mechanism that can be stimulated by DNA damage. Scientific evidences support the hypothesis that reactive oxygen species (ROS) induced DNA damage can promote sexual recombination in eukaryotes which might have been a decisive factor for the origin of sex. The fact that some recombination enzymes also participate in meiotic sex in modern eukaryotes reinforces the idea that sexual reproduction emerged as consequence of specific mechanisms to cope with mutations and alterations in genetic material. In this review we will discuss about origin of sex and different strategies of evolve sexual reproduction in some protists such that cause human diseases like malaria, toxoplasmosis, sleeping sickness, Chagas disease, and leishmaniasis.

2.
Exp Parasitol ; 219: 108016, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33035543

RESUMO

Different genotoxic agents can lead to DNA single- and double-strand breaks, base modification and oxidation. As most living organisms, Trypanosoma cruzi is subjected to oxidative stress during its life cycle; thus, DNA repair is essential for parasite survival and establishment of infection. The mitochondrion plays important roles beyond the production of ATP. For example, it is a source of signaling molecules, such as the superoxide anion and H2O2. Since T. cruzi has only one mitochondrion, the integrity of this organelle is pivotal for parasite viability. H2O2 and methyl methanesulfonate cause DNA lesions in T. cruzi that are repaired by different DNA repair pathways. Herein, we evaluate mitochondrial involvement during the repair of nuclear and mitochondrial DNA in T. cruzi epimastigotes incubated with these two genotoxic agents under conditions that induce repairable DNA damage. Overall, in both treatments, an increase in oxygen consumption rates and in mitochondrial H2O2 release was observed, as well as maintenance of ATP levels compared to control. Interestingly, these changes coincided with DNA repair kinetics, suggesting the importance of the mitochondrion for this energy-consuming process.


Assuntos
Reparo do DNA/fisiologia , DNA Mitocondrial/fisiologia , Mitocôndrias/fisiologia , Trypanosoma cruzi/fisiologia , Trifosfato de Adenosina/metabolismo , Núcleo Celular/genética , Núcleo Celular/fisiologia , Dano ao DNA , Reparo de Erro de Pareamento de DNA/fisiologia , Peróxido de Hidrogênio/metabolismo , Cinética , Metanossulfonato de Metila/farmacologia , Mutagênicos/farmacologia , Fosforilação Oxidativa , Estresse Oxidativo , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética
3.
Mem Inst Oswaldo Cruz ; 115: e190469, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32638832

RESUMO

BACKGROUND Oxidative stress is responsible for generating DNA lesions and the 8-oxoguanine (8-oxoG) is the most commonly lesion found in DNA damage. When this base is incorporated during DNA replication, it could generate double-strand DNA breaks and cellular death. MutT enzyme hydrolyzes the 8-oxoG from the nucleotide pool, preventing its incorporation during DNA replication. OBJECTIVES To investigate the importance of 8-oxoG in Leishmania infantum and L. braziliensis, in this study we analysed the impact of heterologous expression of Escherichia coli MutT (EcMutT) enzyme in drug-resistance phenotype and defense against oxidative stress. METHODS Comparative analysis of L. braziliensis and L. infantum H2O2 tolerance and cell cycle profile were performed. Lines of L. braziliensis and L. infantum expressing EcMutT were generated and evaluated using susceptibility tests to H2O2 and SbIII, cell cycle analysis, γH2A western blotting, and BrdU native detection assay. FINDINGS Comparative analysis of tolerance to oxidative stress generated by H2O2 showed that L. infantum is more tolerant to exogenous H2O2 than L. braziliensis. In addition, cell cycle analysis showed that L. infantum, after treatment with H2O2, remains in G1 phase, returning to its normal growth rate after 72 h. In contrast, after treatment with H2O2, L. braziliensis parasites continue to move to the next stages of the cell cycle. Expression of the E. coli MutT gene in L. braziliensis and L. infantum does not interfere in parasite growth or in susceptibility to SbIII. Interestingly, we observed that L. braziliensis EcMutT-expressing clones were more tolerant to H2O2 treatment, presented lower activation of γH2A, a biomarker of genotoxic stress, and lower replication stress than its parental non-transfected parasites. In contrast, the EcMutT is not involved in protection against oxidative stress generated by H2O2 in L. infantum. MAIN CONCLUSIONS Our results showed that 8-oxoG clearance in L. braziliensis is important to avoid misincorporation during DNA replication after oxidative stress generated by H2O2.


Assuntos
Antimônio/toxicidade , Proteínas de Escherichia coli/genética , Escherichia coli , Guanina/análogos & derivados , Leishmania braziliensis/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Pirofosfatases , Superóxido Dismutase/metabolismo , Animais , Antiprotozoários/farmacologia , Proteínas de Escherichia coli/metabolismo , Guanina/farmacologia , Humanos , Peróxido de Hidrogênio/toxicidade , Leishmania braziliensis/enzimologia , Leishmania infantum/enzimologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Pirofosfatases/genética , Pirofosfatases/metabolismo , Coelhos , Ratos , Superóxido Dismutase/genética
4.
Parasitol Res ; 119(2): 749-753, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31897792

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease, has a complex life cycle that requires the adaptation to different environments. In the absence of traditional mechanisms for regulation of gene expression, this parasite relies on posttranscriptional control events, which allow the progression of its life cycle in different hosts and stress conditions. In this context, different stress conditions trigger the aggregation of RNA-binding proteins and their target mRNAs into cytoplasmic foci known as RNA granules, which act as RNA-sorting centers. In this study, we have characterized the T. cruzi RNA-binding protein ALBA30 during nutritional stress conditions. Using a recombinant form of TcALBA30 to facilitate its detection (rTcALBA30), we showed that this protein resides in the cytoplasm in normal growth conditions but is recruited into cytoplasmic foci after starvation. Moreover, evaluation of rTcALBA30 in parasites that reached the stationary phase of growth also showed the recruitment of this protein into cytoplasmic foci. Our results indicate that, similar to TbALBA3, TcALBA30 aggregates into stress granules in parasites submitted to nutritional stress.


Assuntos
Regulação da Expressão Gênica/genética , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/genética , Estresse Fisiológico/fisiologia , Trypanosoma cruzi/genética , Animais , Ciclo Celular , Doença de Chagas/parasitologia , Citoplasma/metabolismo , Estágios do Ciclo de Vida/fisiologia , RNA Mensageiro/metabolismo , Inanição
5.
Genet Mol Biol ; 43(1 suppl. 1): e20190163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32236391

RESUMO

Pathological processes such as bacterial, viral and parasitic infections can generate a plethora of responses such as, but not restricted to, oxidative stress that can be harmful to the host and the pathogen. This stress occurs when there is an imbalance between reactive oxygen species produced and antioxidant factors produced in response to the infection. This imbalance can lead to DNA lesions in both infected cells as well as in the pathogen. The effects of the host response on the parasite lead to several kinds of DNA damage, causing alterations in the parasite's metabolism; the reaction and sensitivity of the parasite to these responses are related to the DNA metabolism and life cycle of each parasite. The present review will discuss the survival strategies developed by host cells and Trypanosoma cruzi, focusing on the DNA repair mechanisms of these organisms throughout infection including the relationship between DNA damage, stress response features, and the unique characteristics of these diseases.

6.
Genet Mol Biol ; 41(2): 466-474, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30088612

RESUMO

Trypanosoma cruzi is the etiological agent of Chagas disease, a public health challenge due to its morbidity and mortality rates, which affects around 6-7 million people worldwide. Symptoms, response to chemotherapy, and the course of Chagas disease are greatly influenced by T. cruzi's intra-specific variability. Thus, DNA mutations in this parasite possibly play a key role in the wide range of clinical manifestations and in drug sensitivity. Indeed, the environmental conditions of oxidative stress faced by T. cruzi during its life cycle can generate genetic mutations. However, the lack of an established experimental design to assess mutation rates in T. cruzi precludes the study of conditions and mechanisms that potentially produce genomic variability in this parasite. We developed an assay that employs a reporter gene that, once mutated in specific positions, convert G418-sensitive into G418-insenstitive T. cruzi. We were able to determine the frequency of DNA mutations in T. cruzi exposed and non-exposed to oxidative insults assessing the number of colony-forming units in solid selective media after plating a defined number of cells. We verified that T. cruzi's spontaneous mutation frequency was comparable to those found in other eukaryotes, and that exposure to hydrogen peroxide promoted a two-fold increase in T. cruzi's mutation frequency. We hypothesize that genetic mutations in T. cruzi can arise from oxidative insults faced by this parasite during its life cycle.

7.
Parasitology ; 144(11): 1498-1510, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28653592

RESUMO

Trypanosoma cruzi is exposed to oxidative stresses during its life cycle, and amongst the strategies employed by this parasite to deal with these situations sits a peculiar trypanothione-dependent antioxidant system. Remarkably, T. cruzi's antioxidant repertoire does not include catalase. In an attempt to shed light on what are the reasons by which this parasite lacks this enzyme, a T. cruzi cell line stably expressing catalase showed an increased resistance to hydrogen peroxide (H2O2) when compared with wild-type cells. Interestingly, preconditioning carried out with low concentrations of H2O2 led untransfected parasites to be as much resistant to this oxidant as cells expressing catalase, but did not induce the same level of increased resistance in the latter ones. Also, presence of catalase decreased trypanothione reductase and increased superoxide dismutase levels in T. cruzi, resulting in higher levels of residual H2O2 after challenge with this oxidant. Although expression of catalase contributed to elevated proliferation rates of T. cruzi in Rhodnius prolixus, it failed to induce a significant increase of parasite virulence in mice. Altogether, these results indicate that the absence of a gene encoding catalase in T. cruzi has played an important role in allowing this parasite to develop a shrill capacity to sense and overcome oxidative stress.


Assuntos
Catalase/metabolismo , Estresse Oxidativo , Transdução de Sinais , Trypanosoma cruzi/metabolismo , Animais , Catalase/genética , Linhagem Celular , Doença de Chagas/parasitologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Camundongos , NADH NADPH Oxirredutases/metabolismo , Rhodnius/parasitologia , Superóxido Dismutase/metabolismo , Transfecção , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/patogenicidade
8.
Nucleic Acids Res ; 42(5): 2906-18, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24322299

RESUMO

The anti-silencing function protein 1 (Asf1) is a chaperone that forms a complex with histones H3 and H4 facilitating dimer deposition and removal from chromatin. Most eukaryotes possess two different Asf1 chaperones but their specific functions are still unknown. Trypanosomes, a group of early-diverged eukaryotes, also have two, but more divergent Asf1 paralogs than Asf1 of higher eukaryotes. To unravel possible different functions, we characterized the two Asf1 proteins in Trypanosoma brucei. Asf1A is mainly localized in the cytosol but translocates to the nucleus in S phase. In contrast, Asf1B is predominantly localized in the nucleus, as described for other organisms. Cytosolic Asf1 knockdown results in accumulation of cells in early S phase of the cell cycle, whereas nuclear Asf1 knockdown arrests cells in S/G2 phase. Overexpression of cytosolic Asf1 increases the levels of histone H3 and H4 acetylation. In contrast to cytosolic Asf1, overexpression of nuclear Asf1 causes less pronounced growth defects in parasites exposed to genotoxic agents, prompting a function in chromatin remodeling in response to DNA damage. Only the cytosolic Asf1 interacts with recombinant H3/H4 dimers in vitro. These findings denote the early appearance in evolution of distinguishable functions for the two Asf1 chaperons in trypanosomes.


Assuntos
Chaperonas de Histonas/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Acetilação , Ciclo Celular , Dano ao DNA , Chaperonas de Histonas/análise , Chaperonas de Histonas/fisiologia , Histonas/metabolismo , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Proteínas de Protozoários/análise , Proteínas de Protozoários/fisiologia , Trypanosoma brucei brucei/química
9.
Mem Inst Oswaldo Cruz ; 110(3): 433-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25946152

RESUMO

Benznidazole (BZ) is one of the two drugs used for Chagas disease treatment. Nevertheless therapeutic failures of BZ have been reported, which were mostly attributed to variable drug susceptibility among Trypanosoma cruzi strains. ATP-binding cassette (ABC) transporters are involved in a variety of translocation processes and some members have been implicated in drug resistance. Here we report the characterisation of the first T. cruzi ABCG transporter gene, named TcABCG1, which is over-expressed in parasite strains naturally resistant to BZ. Comparison of TcABCG1 gene sequence of two TcI BZ-resistant strains with CL Brener BZ-susceptible strain showed several single nucleotide polymorphisms, which determined 11 amino acid changes. CL Brener transfected with TcI transporter genes showed 40-47% increased resistance to BZ, whereas no statistical significant increment in drug resistance was observed when CL Brener was transfected with the homologous gene. Only in the parasites transfected with TcI genes there was 2-2.6-fold increased abundance of TcABCG1 transporter protein. The analysis in wild type strains also suggests that the level of TcABCG1 transporter is related to BZ natural resistance. The characteristics of untranslated regions of TcABCG1 genes of BZ-susceptible and resistant strains were investigated by computational tools.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Resistência a Medicamentos/genética , Nitroimidazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Animais , DNA de Protozoário/genética , Genótipo , Humanos , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Parasitária , Filogenia
10.
Parasitol Res ; 114(2): 419-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25349143

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits a single mitochondrion with an enlarged portion termed kinetoplast. This unique structure harbors the mitochondrial DNA (kDNA), composed of interlocked molecules: minicircles and maxicircles. kDNA is a hallmark of kinetoplastids and for this reason constitutes a valuable target in chemotherapeutic and cell biology studies. In the present work, we analyzed the effects of berenil, a minor-groove-binding agent that acts preferentially at the kDNA, thereby affecting cell proliferation, ultrastructure, and mitochondrial activity of T. cruzi epimastigote form. Our results showed that berenil promoted a reduction on parasite growth when high concentrations were used; however, cell viability was not affected. This compound caused significant changes in kDNA arrangement, including the appearance of membrane profiles in the network and electron-lucent areas in the kinetoplast matrix, but nuclear ultrastructure was not modified. The use of the TdT technique, which specifically labels DNA, conjugated to atomic force microscopy analysis indicates that berenil prevents the minicircle decatenation of the network, thus impairing DNA replication and culminating in the appearance of dyskinetoplastic cells. Alterations in the kinetoplast network may be associated with kDNA lesions, as suggested by the quantitative PCR (qPCR) technique. Furthermore, parasites treated with berenil presented higher levels of reactive oxygen species and a slight decrease in the mitochondrial membrane potential and oxygen consumption. Taken together, our results reveal that this DNA-binding drug mainly affects kDNA topology and replication, reinforcing the idea that the kinetoplast represents a potential target for chemotherapy against trypanosomatids.


Assuntos
Doença de Chagas/tratamento farmacológico , Replicação do DNA/efeitos dos fármacos , Diminazena/análogos & derivados , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/parasitologia , Diminazena/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/ultraestrutura
11.
Mem Inst Oswaldo Cruz ; 108(6): 707-17, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24037192

RESUMO

Schistosomiasis is a major neglected tropical disease caused by trematodes from the genus Schistosoma. Because schistosomes exhibit a complex life cycle and numerous mechanisms for regulating gene expression, it is believed that spliced leader (SL) trans-splicing could play an important role in the biology of these parasites. The purpose of this study was to investigate the function of trans-splicing in Schistosoma mansoni through analysis of genes that may be regulated by this mechanism and via silencing SL-containing transcripts through RNA interference. Here, we report our analysis of SL transcript-enriched cDNA libraries from different S. mansoni life stages. Our results show that the trans-splicing mechanism is apparently not associated with specific genes, subcellular localisations or life stages. In cross-species comparisons, even though the sets of genes that are subject to SL trans-splicing regulation appear to differ between organisms, several commonly shared orthologues were observed. Knockdown of trans-spliced transcripts in sporocysts resulted in a systemic reduction of the expression levels of all tested trans-spliced transcripts; however, the only phenotypic effect observed was diminished larval size. Further studies involving the findings from this work will provide new insights into the role of trans-splicing in the biology of S. mansoni and other organisms. All Expressed Sequence Tags generated in this study were submitted to dbEST as five different libraries. The accessions for each library and for the individual sequences are as follows: (i) adult worms of mixed sexes (LIBEST_027999: JZ139310 - JZ139779), (ii) female adult worms (LIBEST_028000: JZ139780 - JZ140379), (iii) male adult worms (LIBEST_028001: JZ140380 - JZ141002), (iv) eggs (LIBEST_028002: JZ141003 - JZ141497) and (v) schistosomula (LIBEST_028003: JZ141498 - JZ141974).


Assuntos
Técnicas de Silenciamento de Genes , Precursores de RNA/isolamento & purificação , RNA Líder para Processamento/genética , Schistosoma mansoni/genética , Trans-Splicing/fisiologia , Animais , Etiquetas de Sequências Expressas , Feminino , Regulação da Expressão Gênica/genética , Biblioteca Gênica , Larva , Estágios do Ciclo de Vida/genética , Masculino , Fenótipo , Precursores de RNA/genética , RNA de Cadeia Dupla , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Schistosoma mansoni/crescimento & desenvolvimento , Trans-Splicing/genética
12.
Noncoding RNA ; 8(5)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36287120

RESUMO

Long noncoding RNAs (lncRNAs) undergo splicing and have multiple transcribed isoforms. Nevertheless, for lncRNAs, as well as for mRNA, measurements of expression are routinely performed only at the gene level. Metformin is the first-line oral therapy for type 2 diabetes mellitus and other metabolic diseases. However, its mechanism of action remains not thoroughly explained. Transcriptomic analyses using metformin in different cell types reveal that only protein-coding genes are considered. We aimed to characterize lncRNA isoforms that were differentially affected by metformin treatment on multiple human cell types (three cancer, two non-cancer) and to provide insights into the lncRNA regulation by this drug. We selected six series to perform a differential expression (DE) isoform analysis. We also inferred the biological roles for lncRNA DE isoforms using in silico tools. We found the same isoform of an lncRNA (AC016831.6-205) highly expressed in all six metformin series, which has a second exon putatively coding for a peptide with relevance to the drug action. Moreover, the other two lncRNA isoforms (ZBED5-AS1-207 and AC125807.2-201) may also behave as cis-regulatory elements to the expression of transcripts in their vicinity. Our results strongly reinforce the importance of considering DE isoforms of lncRNA for understanding metformin mechanisms at the molecular level.

13.
Front Cell Infect Microbiol ; 11: 802613, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35059327

RESUMO

Leishmania parasites are the causative agents of a group of neglected tropical diseases known as leishmaniasis. The molecular mechanisms employed by these parasites to adapt to the adverse conditions found in their hosts are not yet completely understood. DNA repair pathways can be used by Leishmania to enable survival in the interior of macrophages, where the parasite is constantly exposed to oxygen reactive species. In higher eukaryotes, DNA repair pathways are coordinated by the central protein kinases ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR). The enzyme Exonuclease-1 (EXO1) plays important roles in DNA replication, repair, and recombination, and it can be regulated by ATM- and ATR-mediated signaling pathways. In this study, the DNA damage response pathways in promastigote forms of L. major were investigated using bioinformatics tools, exposure of lineages to oxidizing agents and radiation damage, treatment of cells with ATM and ATR inhibitors, and flow cytometry analysis. We demonstrated high structural and important residue conservation for the catalytic activity of the putative LmjEXO1. The overexpression of putative LmjEXO1 made L. major cells more susceptible to genotoxic damage, most likely due to the nuclease activity of this enzyme and the occurrence of hyper-resection of DNA strands. These cells could be rescued by the addition of caffeine or a selective ATM inhibitor. In contrast, ATR-specific inhibition made the control cells more susceptible to oxidative damage in an LmjEXO1 overexpression-like manner. We demonstrated that ATR-specific inhibition results in the formation of extended single-stranded DNA, most likely due to EXO1 nucleasic activity. Antagonistically, ATM inhibition prevented single-strand DNA formation, which could explain the survival phenotype of lineages overexpressing LmjEXO1. These results suggest that an ATM homolog in Leishmania could act to promote end resection by putative LmjEXO1, and an ATR homologue could prevent hyper-resection, ensuring adequate repair of the parasite DNA.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , DNA de Cadeia Simples , Leishmania major , DNA de Protozoário , Humanos , Leishmania major/efeitos dos fármacos , Leishmania major/genética , Estresse Oxidativo , Fosforilação
14.
Sci Rep ; 11(1): 9210, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911164

RESUMO

Angomonas deanei coevolves in a mutualistic relationship with a symbiotic bacterium that divides in synchronicity with other host cell structures. Trypanosomatid mitochondrial DNA is contained in the kinetoplast and is composed of thousands of interlocked DNA circles (kDNA). The arrangement of kDNA is related to the presence of histone-like proteins, known as KAPs (kinetoplast-associated proteins), that neutralize the negatively charged kDNA, thereby affecting the activity of mitochondrial enzymes involved in replication, transcription and repair. In this study, CRISPR-Cas9 was used to delete both alleles of the A. deanei KAP4 gene. Gene-deficient mutants exhibited high compaction of the kDNA network and displayed atypical phenotypes, such as the appearance of a filamentous symbionts, cells containing two nuclei and one kinetoplast, and division blocks. Treatment with cisplatin and UV showed that Δkap4 null mutants were not more sensitive to DNA damage and repair than wild-type cells. Notably, lesions caused by these genotoxic agents in the mitochondrial DNA could be repaired, suggesting that the kDNA in the kinetoplast of trypanosomatids has unique repair mechanisms. Taken together, our data indicate that although KAP4 is not an essential protein, it plays important roles in kDNA arrangement and replication, as well as in the maintenance of symbiosis.


Assuntos
Bactérias/metabolismo , Replicação do DNA , DNA de Cinetoplasto/genética , DNA de Protozoário/genética , Mitocôndrias/genética , Proteínas de Protozoários/genética , Trypanosomatina/genética , Divisão Celular , Núcleo Celular , DNA de Cinetoplasto/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA de Protozoário/metabolismo , Mitocôndrias/metabolismo , Proteínas de Protozoários/metabolismo , Simbiose , Trypanosomatina/metabolismo , Trypanosomatina/microbiologia
15.
Front Cell Dev Biol ; 9: 633195w, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055812

RESUMO

DNA topoisomerases are enzymes that modulate DNA topology. Among them, topoisomerase 3α is engaged in genomic maintenance acting in DNA replication termination, sister chromatid separation, and dissolution of recombination intermediates. To evaluate the role of this enzyme in Trypanosoma cruzi, the etiologic agent of Chagas disease, a topoisomerase 3α knockout parasite (TcTopo3α KO) was generated, and the parasite growth, as well as its response to several DNA damage agents, were evaluated. There was no growth alteration caused by the TcTopo3α knockout in epimastigote forms, but a higher dormancy rate was observed. TcTopo3α KO trypomastigote forms displayed reduced invasion rates in LLC-MK2 cells when compared with the wild-type lineage. Amastigote proliferation was also compromised in the TcTopo3α KO, and a higher number of dormant cells was observed. Additionally, TcTopo3α KO epimastigotes were not able to recover cell growth after gamma radiation exposure, suggesting the involvement of topoisomerase 3α in homologous recombination. These parasites were also sensitive to drugs that generate replication stress, such as cisplatin (Cis), hydroxyurea (HU), and methyl methanesulfonate (MMS). In response to HU and Cis treatments, TcTopo3α KO parasites showed a slower cell growth and was not able to efficiently repair the DNA damage induced by these genotoxic agents. The cell growth phenotype observed after MMS treatment was similar to that observed after gamma radiation, although there were fewer dormant cells after MMS exposure. TcTopo3α KO parasites showed a population with sub-G1 DNA content and strong γH2A signal 48 h after MMS treatment. So, it is possible that DNA-damaged cell proliferation due to the absence of TcTopo3α leads to cell death. Whole genome sequencing of MMS-treated parasites showed a significant reduction in the content of the multigene families DFG-1 and RHS, and also a possible erosion of the sub-telomeric region from chromosome 22, relative to non-treated knockout parasites. Southern blot experiments suggest telomere shortening, which could indicate genomic instability in TcTopo3α KO cells owing to MMS treatment. Thus, topoisomerase 3α is important for homologous recombination repair and replication stress in T. cruzi, even though all the pathways in which this enzyme participates during the replication stress response remains elusive.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32373549

RESUMO

MSH2, associated with MSH3 or MSH6, is a central component of the eukaryotic DNA Mismatch Repair (MMR) pathway responsible for the recognition and correction of base mismatches that occur during DNA replication and recombination. Previous studies have shown that MSH2 plays an additional DNA repair role in response to oxidative damage in Trypanosoma cruzi and Trypanosoma brucei. By performing co-immunoprecipitation followed by mass spectrometry with parasites expressing tagged proteins, we confirmed that the parasites' MSH2 forms complexes with MSH3 and MSH6. To investigate the involvement of these two other MMR components in the oxidative stress response, we generated knockout mutants of MSH6 and MSH3 in T. brucei bloodstream forms and MSH6 mutants in T. cruzi epimastigotes. Differently from the phenotype observed with T. cruzi MSH2 knockout epimastigotes, loss of one or two alleles of T. cruzi msh6 resulted in increased susceptibility to H2O2 exposure, besides impaired MMR. In contrast, T. brucei msh6 or msh3 null mutants displayed increased tolerance to MNNG treatment, indicating that MMR is affected, but no difference in the response to H2O2 treatment when compared to wild type cells. Taken together, our results suggest that, while T. cruzi MSH6 and MSH2 are involved with the oxidative stress response in addition to their role as components of the MMR, the DNA repair pathway that deals with oxidative stress damage operates differently in T. brucei.


Assuntos
Trypanosoma brucei brucei , Trypanosoma cruzi , Dano ao DNA , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Peróxido de Hidrogênio/toxicidade , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Estresse Oxidativo , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
17.
Front Cell Dev Biol ; 8: 602956, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33415107

RESUMO

DNA double-strand breaks (DSBs) are among the most deleterious lesions that threaten genome integrity. To address DSBs, eukaryotic cells of model organisms have evolved a complex network of cellular pathways that are able to detect DNA damage, activate a checkpoint response to delay cell cycle progression, recruit the proper repair machinery, and resume the cell cycle once the DNA damage is repaired. Cell cycle checkpoints are primarily regulated by the apical kinases ATR and ATM, which are conserved throughout the eukaryotic kingdom. Trypanosoma brucei is a divergent pathogenic protozoan parasite that causes human African trypanosomiasis (HAT), a neglected disease that can be fatal when left untreated. The proper signaling and accuracy of DNA repair is fundamental to T. brucei not only to ensure parasite survival after genotoxic stress but also because DSBs are involved in the process of generating antigenic variations used by this parasite to evade the host immune system. DSBs trigger a strong DNA damage response and efficient repair process in T. brucei, but it is unclear how these processes are coordinated. Here, by knocking down ATR in T. brucei using two different approaches (conditional RNAi and an ATR inhibitor), we show that ATR is required to mediate intra-S and partial G1/S checkpoint responses. ATR is also involved in replication fork stalling, is critical for H2A histone phosphorylation in a small group of cells and is necessary for the recruitment and upregulation of the HR-mediated DNA repair protein RAD51 after ionizing radiation (IR) induces DSBs. In summary, this work shows that apical ATR kinase plays a central role in signal transduction and is critical for orchestrating the DNA damage response in T. brucei.

18.
Front Genet ; 11: 1031, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088283

RESUMO

The protozoan Trypanosoma cruzi (T. cruzi) is a well-adapted parasite to mammalian hosts and the pathogen of Chagas disease in humans. As both host and T. cruzi are highly genetically diverse, many variables come into play during infection, making disease outcomes difficult to predict. One important challenge in the field of Chagas disease research is determining the main factors leading to parasite establishment in the chronic stage in some organs, mainly the heart and/or digestive system. Our group previously showed that distinct strains of T. cruzi (JG and Col1.7G2) acquired differential tissue distribution in the chronic stage in dually infected BALB/c mice. To investigate changes in the host triggered by the two distinct T. cruzi strains, we assessed the gene expression profiles of BALB/c mouse hearts infected with either JG, Col1.7G2 or an equivalent mixture of both parasites during the initial phase of infection. This study demonstrates the clear differences in modulation of host gene expression by both parasites. Col1.7G2 strongly activated Th1-polarized immune signature genes, whereas JG caused only minor activation of the host immune response. Moreover, JG strongly reduced the expression of genes encoding ribosomal proteins and mitochondrial proteins related to the electron transport chain. Interestingly, the evaluation of gene expression in mice inoculated with a mixture of the parasites produced expression profiles with both up- and downregulated genes, indicating the coexistence of both parasite strains in the heart during the acute phase. This study suggests that different strains of T. cruzi may be distinguished by their efficiency in activating the immune system, modulating host energy metabolism and reactive oxygen species production and decreasing protein synthesis during early infection, which may be crucial for parasite persistence in specific organs.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32117793

RESUMO

The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that affects around 8 million people worldwide. Chagas disease can be divided into two stages: an acute stage with high parasitemia followed by a low parasitemia chronic stage. Recently, the importance of dormancy concerning drug resistance in T. cruzi amastigotes has been shown. Here, we quantify the percentage of dormant parasites from different T. cruzi DTUs during their replicative epimastigote and amastigote stages. For this study, cells of T. cruzi CL Brener (DTU TcVI); Bug (DTU TcV); Y (DTU TcII); and Dm28c (DTU TcI) were used. In order to determine the proliferation rate and percentage of dormancy in epimastigotes, fluorescent-labeled cells were collected every 24 h for flow cytometer analysis, and cells showing maximum fluorescence after 144 h of growth were considered dormant. For the quantification of dormant amastigotes, fluorescent-labeled trypomastigotes were used for infection of LLC-MK2 cells. The number of amastigotes per infected LLC-MK2 cell was determined, and those parasites that presented fluorescent staining after 96 h of infection were considered dormant. A higher number of dormant cells was observed in hybrid strains when compared to non-hybrid strains for both epimastigote and amastigote forms. In order to investigate, the involvement of homologous recombination in the determination of dormancy in T. cruzi, we treated CL Brener cells with gamma radiation, which generates DNA lesions repaired by this process. Interestingly, the dormancy percentage was increased in gamma-irradiated cells. Since, we have previously shown that naturally-occurring hybrid T. cruzi strains present higher transcription of RAD51-a key gene in recombination process -we also measured the percentage of dormant cells from T. cruzi clone CL Brener harboring single knockout for RAD51. Our results showed a significative reduction of dormant cells in this T. cruzi CL Brener RAD51 mutant, evidencing a role of homologous recombination in the process of dormancy in this parasite. Altogether, our data suggest the existence of an adaptive difference between T. cruzi strains to generate dormant cells, and that homologous recombination may be important for dormancy in this parasite.


Assuntos
Recombinação Homóloga , Trypanosoma cruzi/genética , Trypanosoma cruzi/fisiologia , Animais , Linhagem Celular , Macaca mulatta , Mutação , Proteínas de Protozoários/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , Rad51 Recombinase/genética , Especificidade da Espécie , Trypanosoma cruzi/citologia , Trypanosoma cruzi/crescimento & desenvolvimento
20.
DNA Repair (Amst) ; 7(11): 1882-92, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18761429

RESUMO

Mammalian DNA polymerase beta is a nuclear enzyme involved in the base excision and single-stranded DNA break repair pathways. In trypanosomatids, this protein does not have a defined cellular localization, and its function is poorly understood. We characterized two Trypanosoma cruzi proteins homologous to mammalian DNA polymerasebeta, TcPolbeta and TcPolbetaPAK, and showed that both enzymes localize to the parasite kinetoplast. In vitro assays with purified proteins showed that they have DNA polymerization and deoxyribose phosphate lyase activities. Optimal conditions for polymerization were different for each protein with respect to dNTP concentration and temperature, and TcPolbetaPAK, in comparison to TcPolbeta, conducted DNA synthesis over a much broader pH range. TcPolbeta was unable to carry out mismatch extension or DNA synthesis across 8-oxodG lesions, and was able to discriminate between dNTP and ddNTP. These specific abilities of TcPolbeta were not observed for TcPolbetaPAK or other X family members, and are not due to a phenylalanine residue at position 395 in the C-terminal region of TcPolbeta, as assessed by a site-directed mutagenesis experiment reversing this residue to a well conserved tyrosine. Our data suggest that both polymerases from T. cruzi could cooperate to maintain mitochondrial DNA integrity through their multiple roles in base excision repair, gap filling and translesion synthesis.


Assuntos
DNA Polimerase beta/metabolismo , DNA Mitocondrial/metabolismo , Trypanosoma cruzi/enzimologia , Quinases Ativadas por p21/metabolismo , Sequência de Aminoácidos , Animais , Bioquímica/métodos , Clonagem Molecular , Primers do DNA/química , Microscopia Confocal , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA