Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 539(7629): 416-419, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27776357

RESUMO

The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.


Assuntos
Aerossóis/análise , Chuva , Aerossóis/química , Biomassa , Brasil , Incêndios , Tamanho da Partícula , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
2.
Ann N Y Acad Sci ; 1522(1): 74-97, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36726230

RESUMO

Vegetation and atmosphere processes are coupled through a myriad of interactions linking plant transpiration, carbon dioxide assimilation, turbulent transport of moisture, heat and atmospheric constituents, aerosol formation, moist convection, and precipitation. Advances in our understanding are hampered by discipline barriers and challenges in understanding the role of small spatiotemporal scales. In this perspective, we propose to study the atmosphere-ecosystem interaction as a continuum by integrating leaf to regional scales (multiscale) and integrating biochemical and physical processes (multiprocesses). The challenges ahead are (1) How do clouds and canopies affect the transferring and in-canopy penetration of radiation, thereby impacting photosynthesis and biogenic chemical transformations? (2) How is the radiative energy spatially distributed and converted into turbulent fluxes of heat, moisture, carbon, and reactive compounds? (3) How do local (leaf-canopy-clouds, 1 m to kilometers) biochemical and physical processes interact with regional meteorology and atmospheric composition (kilometers to 100 km)? (4) How can we integrate the feedbacks between cloud radiative effects and plant physiology to reduce uncertainties in our climate projections driven by regional warming and enhanced carbon dioxide levels? Our methodology integrates fine-scale explicit simulations with new observational techniques to determine the role of unresolved small-scale spatiotemporal processes in weather and climate models.


Assuntos
Dióxido de Carbono , Ecossistema , Humanos , Atmosfera/química , Tempo (Meteorologia) , Clima
3.
Proc Natl Acad Sci U S A ; 106(10): 3670-4, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19237571

RESUMO

Shallow clouds are prone to appear over deforested surfaces whereas deep clouds, much less frequent than shallow clouds, favor forested surfaces. Simultaneous atmospheric soundings at forest and pasture sites during the Rondonian Boundary Layer Experiment (RBLE-3) elucidate the physical mechanisms responsible for the observed correlation between clouds and land cover. We demonstrate that the atmospheric boundary layer over the forested areas is more unstable and characterized by larger values of the convective available potential energy (CAPE) due to greater humidity than that which is found over the deforested area. The shallow convection over the deforested areas is relatively more active than the deep convection over the forested areas. This greater activity results from a stronger lifting mechanism caused by mesoscale circulations driven by deforestation-induced heterogeneities in land cover.


Assuntos
Clima , Conservação dos Recursos Naturais , Rios , Algoritmos , Comunicações Via Satélite , América do Sul
4.
Sci Adv ; 8(2): eabj0329, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020441

RESUMO

Aerosol-cloud interactions remain uncertain in assessing climate change. While anthropogenic activities produce copious aerosol nanoparticles smaller than 10 nanometers, they are too small to act as efficient cloud condensation nuclei (CCN). The mechanisms responsible for particle growth to CCN-relevant sizes are poorly understood. Here, we present aircraft observations of rapid growth of anthropogenic nanoparticles downwind of an isolated metropolis in the Amazon rainforest. Model analysis reveals that the sustained particle growth to CCN sizes is predominantly caused by particle-phase diffusion-limited partitioning of semivolatile oxidation products of biogenic hydrocarbons. Cloud-resolving numerical simulations show that the enhanced CCN concentrations in the urban plume substantially alter the formation of shallow convective clouds, suppress precipitation, and enhance the transition to deep convective clouds. The proposed nanoparticle growth mechanism, expressly enabled by the abundantly formed semivolatile organics, suggests an appreciable impact of anthropogenic aerosols on cloud life cycle in previously unpolluted forests of the world.

5.
Science ; 359(6374): 411-418, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371462

RESUMO

Aerosol-cloud interactions remain the largest uncertainty in climate projections. Ultrafine aerosol particles smaller than 50 nanometers (UAP<50) can be abundant in the troposphere but are conventionally considered too small to affect cloud formation. Observational evidence and numerical simulations of deep convective clouds (DCCs) over the Amazon show that DCCs forming in a low-aerosol environment can develop very large vapor supersaturation because fast droplet coalescence reduces integrated droplet surface area and subsequent condensation. UAP<50 from pollution plumes that are ingested into such clouds can be activated to form additional cloud droplets on which excess supersaturation condenses and forms additional cloud water and latent heating, thus intensifying convective strength. This mechanism suggests a strong anthropogenic invigoration of DCCs in previously pristine regions of the world.

6.
Atmos Chem Phys ; 18(14): 10433-10457, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-33354203

RESUMO

Biogenic volatile organic compounds (BVOCs) from the Amazon forest region represent the largest source of organic carbon emissions to the atmosphere globally. These BVOC emissions dominantly consist of volatile and intermediate-volatility terpenoid compounds that undergo chemical transformations in the atmosphere to form oxygenated condensable gases and secondary organic aerosol (SOA). We collected quartz filter samples with 12 h time resolution and performed hourly in situ measurements with a semi-volatile thermal desorption aerosol gas chromatograph (SV-TAG) at a rural site ("T3") located to the west of the urban center of Manaus, Brazil as part of the Green Ocean Amazon (GoAmazon2014/5) field campaign to measure intermediate-volatility and semi-volatile BVOCs and their oxidation products during the wet and dry seasons. We speciated and quantified 30 sesquiterpenes and 4 diterpenes with mean concentrations in the range 0.01-6.04 ngm-3 (1-670ppqv). We estimate that sesquiterpenes contribute approximately 14 and 12% to the total reactive loss of O3 via reaction with isoprene or terpenes during the wet and dry seasons, respectively. This is reduced from ~ 50-70 % for within-canopy reactive O3 loss attributed to the ozonolysis of highly reactive sesquiterpenes (e.g., ß-caryophyllene) that are reacted away before reaching our measurement site. We further identify a suite of their oxidation products in the gas and particle phases and explore their role in biogenic SOA formation in the central Amazon region. Synthesized authentic standards were also used to quantify gas- and particle-phase oxidation products derived from ß-caryophyllene. Using tracer-based scaling methods for these products, we roughly estimate that sesquiterpene oxidation contributes at least 0.4-5 % (median 1 %) of total submicron OA mass. However, this is likely a low-end estimate, as evidence for additional unaccounted sesquiterpenes and their oxidation products clearly exists. By comparing our field data to laboratory-based sesquiterpene oxidation experiments we confirm that more than 40 additional observed compounds produced through sesquiterpene oxidation are present in Amazonian SOA, warranting further efforts towards more complete quantification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA