Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Plant Res ; 135(1): 3-14, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34668105

RESUMO

The ASYMMETRIC LEAVES2 (AS2) gene in Arabidopsis thaliana is responsible for the development of flat, symmetric, and extended leaf laminae and their vein systems. AS2 protein is a member of the plant-specific AS2/LOB protein family, which includes 42 members comprising the conserved amino-terminal domain referred to as the AS2/LOB domain, and the variable carboxyl-terminal region. Among the members, AS2 has been most intensively investigated on both genetic and molecular levels. AS2 forms a complex with the myb protein AS1, and is involved in epigenetic repression of the abaxial genes ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3), ARF4, and class 1 KNOX homeobox genes. The repressed expression of these genes by AS2 is markedly enhanced by the cooperative action of various modifier genes, some of which encode nucleolar proteins. Further downstream, progression of the cell division cycle in the developing organs is stimulated; meristematic states are suppressed in determinate leaf primordia; and the extension of leaf primordia is induced. AS2 binds the specific sequence in exon 1 of ETT/ARF3 and maintains methylated CpGs in several exons of ETT/ARF3. AS2 forms bodies (designated as AS2 bodies) at nucleolar peripheries. AS2 bodies partially overlap chromocenters, including inactive 45S ribosomal DNA repeats, suggesting the presence of molecular and functional links among AS2, the 45S rDNAs, and the nucleolus to exert the repressive regulation of ETT/ARF3. The AS2/LOB domain is characterized by three subdomains, the zinc finger (ZF) motif, the internally conserved-glycine containing (ICG) region, and the leucine-zipper-like (LZL) region. Each of these subdomains is essential for the formation of AS2 bodies. ICG to LZL are required for nuclear localization, but ZF is not. LZL intrinsically has the potential to be exported to the cytoplasm. In addition to its nuclear function, it has been reported that AS2 plays a positive role in geminivirus infection: its protein BV1 stimulates the expression of AS2 and recruits AS2 to the cytoplasm, which enhances virus infectivity by suppression of cytoplasmic post transcriptional gene silencing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas , Mutação , Desenvolvimento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Plant J ; 101(5): 1118-1134, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31639235

RESUMO

In Arabidopsis, the ASYMMETRIC LEAVES2 (AS2) protein plays a key role in the formation of flat symmetric leaves via direct repression of the abaxial gene ETT/ARF3. AS2 encodes a plant-specific nuclear protein that contains the AS2/LOB domain, which includes a zinc-finger (ZF) motif that is conserved in the AS2/LOB family. We have shown that AS2 binds to the coding DNA of ETT/ARF3, which requires the ZF motif. AS2 is co-localized with AS1 in perinucleolar bodies (AS2 bodies). To identify the amino acid signals in AS2 required for formation of AS2 bodies and function(s) in leaf formation, we constructed recombinant DNAs that encoded mutant AS2 proteins fused to yellow fluorescent protein. We examined the subcellular localization of these proteins in cells of cotyledons and leaf primordia of transgenic plants and cultured cells. The amino acid signals essential for formation of AS2 bodies were located within and adjacent to the ZF motif. Mutant AS2 that failed to form AS2 bodies also failed to rescue the as2-1 mutation. Our results suggest the importance of the formation of AS2 bodies and the nature of interactions of AS2 with its target DNA and nucleolar factors including NUCLEOLIN1. The partial overlap of AS2 bodies with perinucleolar chromocenters with condensed ribosomal RNA genes implies a correlation between AS2 bodies and the chromatin state. Patterns of AS2 bodies in cells during interphase and mitosis in leaf primordia were distinct from those in cultured cells, suggesting that the formation and distribution of AS2 bodies are developmentally modulated in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Domínios Proteicos , Fatores de Transcrição/genética , Dedos de Zinco
3.
Int J Mol Sci ; 21(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022996

RESUMO

Leaves of Arabidopsis develop from a shoot apical meristem grow along three (proximal-distal, adaxial-abaxial, and medial-lateral) axes and form a flat symmetric architecture. ASYMMETRIC LEAVES2 (AS2), a key regulator for leaf adaxial-abaxial partitioning, encodes a plant-specific nuclear protein and directly represses the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). How AS2 could act as a critical regulator, however, has yet to be demonstrated, although it might play an epigenetic role. Here, we summarize the current understandings of the genetic, molecular, and cellular functions of AS2. A characteristic genetic feature of AS2 is the presence of a number of (about 60) modifier genes, mutations of which enhance the leaf abnormalities of as2. Although genes for proteins that are involved in diverse cellular processes are known as modifiers, it has recently become clear that many modifier proteins, such as NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10), are localized in the nucleolus. Some modifiers including ribosomal proteins are also members of the small subunit processome (SSUP). In addition, AS2 forms perinucleolar bodies partially colocalizing with chromocenters that include the condensed inactive 45S ribosomal RNA genes. AS2 participates in maintaining CpG methylation in specific exons of ETT/ARF3. NUC1 and RH10 genes are also involved in maintaining the CpG methylation levels and repressing ETT/ARF3 transcript levels. AS2 and nucleolus-localizing modifiers might cooperatively repress ETT/ARF3 to develop symmetric flat leaves. These results raise the possibility of a nucleolus-related epigenetic repression system operating for developmental genes unique to plants and predict that AS2 could be a molecule with novel functions that cannot be explained by the conventional concept of transcription factors.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , RNA Helicases DEAD-box/genética , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Polaridade Celular/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Nucleolina
4.
Plant Cell Physiol ; 59(7): 1385-1397, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29415182

RESUMO

Arabidopsis ASYMMETRIC LEAVES2 (AS2) plays a critical role in leaf adaxial-abaxial partitioning by repressing expression of the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). We previously reported that six CpG dinucleotides in its exon 6 are thoroughly methylated by METHYLTRASFERASE1, that CpG methylation levels are inversely correlated with ETT/ARF3 transcript levels and that methylation levels at three out of the six CpG dinucleotides are decreased in as2-1. All these imply that AS2 is involved in epigenetic repression of ETT/ARF3 by gene body DNA methylation. The mechanism of the epigenetic repression by AS2, however, is unknown. Here, we tested mutations of NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10) encoding nucleolus-localized proteins for the methylation in exon 6 as these mutations enhance the level of ETT/ARF3 transcripts in as2-1. Methylation levels at three specific CpGs were decreased in rh10-1, and two of those three overlapped with those in as2-1. Methylation levels at two specific CpGs were decreased in nuc1-1, and one of those three overlapped with that in as2-1. No site was affected by both rh10-1 and nuc1-1. One specific CpG was unaffected by these mutations. These results imply that the way in which RH10, NUC1 and AS2 are involved in maintaining methylation at five CpGs in exon 6 might be through at least several independent pathways, which might interact with each other. Furthermore, we found that AS2 binds specifically the sequence containing CpGs in exon 1 of ETT/ARF3, and that the binding requires the zinc-finger-like motif in AS2 that is structurally similar to the zinc finger-CxxC domain in vertebrate DNA methyltransferase1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , RNA Helicases DEAD-box/metabolismo , Metilação de DNA , Folhas de Planta/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ilhas de CpG , Citosina/metabolismo , RNA Helicases DEAD-box/genética , Proteínas de Ligação a DNA/metabolismo , Éxons , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Folhas de Planta/genética , Domínios Proteicos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética
5.
Development ; 140(9): 1958-69, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23571218

RESUMO

Leaf primordia are generated at the periphery of the shoot apex, developing into flat symmetric organs with adaxial-abaxial polarity, in which the indeterminate state is repressed. Despite the crucial role of the ASYMMETRIC LEAVES1 (AS1)-AS2 nuclear-protein complex in leaf adaxial-abaxial polarity specification, information on mechanisms controlling their downstream genes has remained elusive. We systematically analyzed transcripts by microarray and chromatin immunoprecipitation assays and performed genetic rescue of as1 and as2 phenotypic abnormalities, which identified a new target gene, ETTIN (ETT)/AUXIN RESPONSE FACTOR3 (ARF3), which encodes an abaxial factor acting downstream of the AS1-AS2 complex. While the AS1-AS2 complex represses ETT by direct binding of AS1 to the ETT promoter, it also indirectly activates miR390- and RDR6-dependent post-transcriptional gene silencing to negatively regulate both ETT and ARF4 activities. Furthermore, AS1-AS2 maintains the status of DNA methylation in the ETT coding region. In agreement, filamentous leaves formed in as1 and as2 plants treated with a DNA methylation inhibitor were rescued by loss of ETT and ARF4 activities. We suggest that negative transcriptional, post-transcriptional and epigenetic regulation of the ARFs by AS1-AS2 is important for stabilizing early leaf partitioning into abaxial and adaxial domains.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Folhas de Planta/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Northern Blotting , Proliferação de Células , Imunoprecipitação da Cromatina , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
6.
Plant Cell Physiol ; 54(3): 418-31, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23396601

RESUMO

It is necessary to use algorithms to analyze gene expression data from DNA microarrays, such as in clustering and machine learning. Previously, we developed the knowledge-based fuzzy adaptive resonance theory (KB-FuzzyART), a clustering algorithm suitable for analyzing gene expression data, to find clues for identifying gene networks. Leaf primordia form around the shoot apical meristem (SAM), which consists of indeterminate stem cells. Upon initiation of leaf development, adaxial-abaxial patterning is crucial for lateral expansion, via cellular proliferation, and the formation of flat symmetric leaves. Many regulatory genes that specify such patterning have been identified. Analysis by the KB-FuzzyART and subsequent molecular and genetic analyses previously showed that ASYMMETRIC LEAVES1 (AS1) and AS2 repress the expression of some abaxial-determinant genes, such as AUXIN RESPONSE FACTOR3 (ARF3)/ETTIN (ETT) and ARF4, which are responsible for defects in leaf adaxial-abaxial polarity in as1 and as2. In the present study, genetic analysis revealed that ARF3/ETT and ARF4 were regulated by modifier genes, BOBBER1 (BOB1) and ELONGATA3 (ELO3), together with AS1-AS2. We analyzed expression arrays with as2 elo3 and as2 bob1, and extracted genes downstream of ARF3/ETT by using KB-FuzzyART and molecular analyses. The results showed that expression of Kip-related protein (KRP) (for inhibitors of cyclin-dependent protein kinases) and Isopentenyltransferase (IPT) (for biosynthesis of cytokinin) genes were controlled by AS1-AS2 through ARF3/ETT and ARF4 functions, which suggests that the AS1-AS2-ETT pathway plays a critical role in controlling the cell division cycle and the biosynthesis of cytokinin around SAM to stabilize leaf development in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Algoritmos , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Análise por Conglomerados , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Modelos Moleculares , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Plants (Basel) ; 12(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37896084

RESUMO

Arabidopsis ASYMMETRIC LEAVES2 (AS2) plays a key role in the formation of flat symmetric leaves. AS2 represses the expression of the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). AS2 interacts in vitro with the CGCCGC sequence in ETT/ARF3 exon 1. In cells of leaf primordia, AS2 localizes at peripheral regions of the nucleolus as two AS2 bodies, which are partially overlapped with chromocenters that contain condensed 45S ribosomal DNA repeats. AS2 contains the AS2/LOB domain, which consists of three sequences conserved in the AS2/LOB family: the zinc finger (ZF) motif, the ICG sequence including the conserved glycine residue, and the LZL motif. AS2 and the genes NUCLEOLIN1 (NUC1), RNA HELICASE10 (RH10), and ROOT INITIATION DEFECTIVE2 (RID2) that encode nucleolar proteins coordinately act as repressors against the expression of ETT/ARF3. Here, we examined the formation and patterning of AS2 bodies made from as2 mutants with amino acid substitutions in the ZF motif and the ICG sequence in cells of cotyledons and leaf primordia. Our results showed that the amino acid residues next to the cysteine residues in the ZF motif were essential for both the formation of AS2 bodies and the interaction with ETT/ARF3 DNA. The conserved glycine residue in the ICG sequence was required for the formation of AS2 bodies, but not for the DNA interaction. We also examined the effects of nuc1, rh10, and rid2 mutations, which alter the metabolism of rRNA intermediates and the morphology of the nucleolus, and showed that more than two AS2 bodies were observed in the nucleolus and at its periphery. These results suggested that the patterning of AS2 bodies is tightly linked to the morphology and functions of the nucleolus and the development of flat symmetric leaves in plants.

8.
Plant Mol Biol ; 79(6): 569-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22684430

RESUMO

Leaves develop as flat lateral organs from the indeterminate shoot apical meristem. The establishment of polarity along three-dimensional axes, proximal-distal, medial-lateral, and adaxial-abaxial axes, is crucial for the growth of normal leaves. The mutations of ASYMMETRIC LEAVES1 (AS1) and AS2 of Arabidopsis thaliana cause defects in repression of the indeterminate state and the establishment of axis formation in leaves. Although many mutations have been identified that enhance the adaxial-abaxial polarity defects of as1 and as2 mutants, the roles of the causative genes in leaf development are still unknown. In this study, we found that wild-type plants treated with berberine produced pointed leaves, which are often observed in the single mutants that enhance phenotypes of as1 and as2 mutants. The berberine-treated as1 and as2 mutants formed abaxialized filamentous leaves. Berberine, an isoquinoline alkaloid compound naturally produced in various plant sources, has a growth inhibitory effect on plants that do not produce berberine. We further showed that transcript levels of meristem-specific class 1 KNOX homeobox genes and abaxial determinant genes were increased in berberine-treated as1 and as2. Berberine treated plants carrying double mutations of AS2 and the large subunit ribosomal protein gene RPL5B showed more severe defects in polarity than did the as2 single mutant plants. We suggest that berberine inhibits (a) factor(s) that might be required for leaf adaxial cell differentiation through a pathway independent of AS1 and AS2. Multiple pathways might play important roles in the formation of flat symmetric leaves.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Berberina/farmacologia , Folhas de Planta/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Berberina/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mesoporfirinas/farmacologia , Análise em Microsséries , Estrutura Molecular , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/efeitos dos fármacos , Fatores de Transcrição/genética
9.
J Plant Res ; 125(5): 661-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22351044

RESUMO

Leaf primordia with high division and developmental competencies are generated around the periphery of stem cells at the shoot apex. Arabidopsis ASYMMETRIC-LEAVES2 (AS2) protein plays a key role in the regulation of many genes responsible for flat symmetric leaf formation. The AS2 gene, expressed in leaf primordia, encodes a plant-specific nuclear protein containing an AS2/LOB domain with cysteine repeats (C-motif). AS2 proteins are present in speckles in and around the nucleoli, and in the nucleoplasm of some leaf epidermal cells. We used the tobacco cultured cell line BY-2 expressing the AS2-fused yellow fluorescent protein to examine subnuclear localization of AS2 in dividing cells. AS2 mainly localized to speckles (designated AS2 bodies) in cells undergoing mitosis and distributed in a pairwise manner during the separation of sets of daughter chromosomes. Few interphase cells contained AS2 bodies. Deletion analyses showed that a short stretch of the AS2 amino-terminal sequence and the C-motif play negative and positive roles, respectively, in localizing AS2 to the bodies. These results suggest that AS2 bodies function to properly distribute AS2 to daughter cells during cell division in leaf primordia; and this process is controlled at least partially by signals encoded by the AS2 sequence itself.


Assuntos
Proteínas de Arabidopsis/metabolismo , Morfogênese/genética , Nicotiana/citologia , Nicotiana/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Células Cultivadas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mitose , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética , Fatores de Transcrição/genética
10.
Plant J ; 61(1): 70-82, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19891706

RESUMO

The asymmetric leaves 1 (as1) and as2 mutants of Arabidopsis thaliana exhibit pleiotropic phenotypes. Expression of a number of genes, including three class-1 KNOTTED-like homeobox (KNOX) genes (BP, KNAT2 and KNAT6) and ETTIN/ARF3, is enhanced in these mutants. In the present study, we attempted to identify the phenotypic features of as1 and as2 mutants that were generated by ectopic expression of KNOX genes, using multiple loss-of-function mutations of KNOX genes as well as as1 and as2. Our results revealed that the ectopic expression of class-1 KNOX genes resulted in reductions in the sizes of leaves, reductions in the size of sepals and petals, the formation of a less prominent midvein, the repression of adventitious root formation and late flowering. Our results also revealed that the reduction in leaf size and late flowering were caused by the repression, by KNOX genes, of a gibberellin (GA) pathway in as1 and as2 plants. The formation of a less prominent midvein and the repression of adventitious root formation were not, however, related to the GA pathway. The asymmetric formation of leaf lobes, the lower complexity of higher-ordered veins, and the elevated frequency of adventitious shoot formation on leaves of as1 and as2 plants were not rescued by multiple mutations in KNOX genes. These features must, therefore, be controlled by other genes in which expression is enhanced in the as1 and as2 mutants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Folhas de Planta/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
11.
Plant Cell Physiol ; 52(8): 1259-73, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21700721

RESUMO

Leaf primordia are generated around the shoot apical meristem. Mutation of the ASYMMETRIC LEAVES2 (AS2) gene of Arabidopsis thaliana results in defects in repression of the meristematic and indeterminate state, establishment of adaxial-abaxial polarity and left-right symmetry in leaves. AS2 represses transcription of meristem-specific class 1 KNOX homeobox genes and of the abaxial-determinant genes ETTIN/ARF3, KANADI2 and YABBY5. To clarify the role of AS2 in the establishment of leaf polarity, we isolated mutations that enhanced the polarity defects associated with as2. We describe here the enhancer-of-asymmetric-leaves-two1 (east1) mutation, which caused the formation of filamentous leaves with abaxialized epidermis on the as2-1 background. Levels of transcripts of class 1 KNOX and abaxial-determinant genes were markedly higher in as2-1 east1-1 mutant plants than in the wild-type and corresponding single-mutant plants. EAST1 encodes the histone acetyltransferase ELONGATA3 (ELO3), a component of the Elongator complex. Genetic analysis, using mutations in genes involved in the biogenesis of a trans-acting small interfering RNA (ta-siRNA), revealed that ELO3 mediated establishment of leaf polarity independently of AS2 and the ta-siRNA-related pathway. Treatment with an inhibitor of histone deacetylases (HDACs) caused additive polarity defects in as2-1 east1-1 mutant plants, suggesting the operation of an ELO3 pathway, independent of the HDAC pathway, in the determination of polarity. We propose that multiple pathways play important roles in repression of the expression of class 1 KNOX and abaxial-determinant genes in the development of the adaxial domain of leaves and, thus, in the establishment of leaf polarity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Polaridade Celular , Histona Acetiltransferases/metabolismo , Folhas de Planta/citologia , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Linhagem da Célula/efeitos dos fármacos , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Histona Acetiltransferases/genética , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Modelos Biológicos , Mutação/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , RNA Polimerase Dependente de RNA/genética , Fatores de Transcrição/genética
12.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414305

RESUMO

A Saccharomyces cerevisiae mutant strain, NYR20, produces a red pigment owing to adenine auxotrophy. Unlike other yeast adenine biosynthetic mutants, this strain not only produces but also secretes this pigment. Here, we report the NYR20 draft genome sequence, thereby advancing our understanding of pigment secretion mechanisms.

13.
Plant J ; 58(3): 525-37, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19154202

RESUMO

The ASYMMETRIC LEAVES2 (AS2) gene is required for the generation of the flat and symmetrical shape of the leaf lamina in Arabidopsis. AS2 encodes a plant-specific protein with an AS2/LATERAL ORGAN BOUNDARIES (AS2/LOB) domain that includes a cysteine repeat, a conserved single glycine residue and a leucine-zipper-like sequence in its amino-terminal half. The Arabidopsis genome contains 42 genes, including AS2, that encode proteins with an AS2/LOB domain in their amino-terminal halves, and these genes constitute the AS2/LOB gene family. In the present study, we cloned and characterized cDNAs that covered the putative coding regions of all members of this family, and investigated patterns of transcription systematically in Arabidopsis plants. Comparisons among amino acid sequences that had been deduced from the cloned cDNAs revealed eight groups of genes, with two or three members each, and high degrees of identity among entire amino acid sequences, suggesting that some members of the AS2/LOB family might have redundant function(s). Moreover, no member of the family exhibited significant similarity, in terms of the deduced amino acid sequence of the carboxy-terminal half, to AS2. Results of domain swapping between AS2 and other members of the family showed that the AS2/LOB domain of AS2 cannot be functionally replaced by those of other members of the family, and that only a few dissimilarities among respective amino acid residues of the AS2/LOB domain of AS2 and those of other members are important for the specific functions of AS2.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Família Multigênica , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromossomos de Plantas/genética , Clonagem Molecular , Sequência Conservada , DNA Complementar/genética , Duplicação Gênica , Perfilação da Expressão Gênica , Genes de Plantas , Íntrons , RNA de Plantas/genética , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Transcrição Gênica
14.
Microbiol Resour Announc ; 9(41)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033134

RESUMO

Saccharomyces cerevisiae strain P-684 is a yeast isolated from the flowers of Prunus verecunda 'Antiqua,' producing high quantities of malic and succinic acids in sake brewing. Here, we report the draft genome sequence of P-684, enlightening the mechanisms of biosynthesis of these organic acids by this strain.

15.
Genes Cells ; 13(6): 521-35, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18422605

RESUMO

We identified an embryo yellow (eye) mutation in Arabidopsis that leads to the abnormal coloration and morphology of embryos. The eye mutant formed bushy plants, with aberrant organization of the shoot apical meristem (SAM) and unexpanded leaves with irregular phyllotaxy. The epidermal cells of the eye mutant were much smaller than that of the wild-type. Thus, EYE is required for expansion of cells and organs, and for formation of the organized SAM. Hydrophobic layers of epidermal cells were also disrupted, suggesting that EYE might be involved in the generation of the extra-cellular matrix. The mutated gene encoded a protein that is homologous to Cog7, a subunit of the conserved oligomeric Golgi (COG) complex, which is required for the normal morphology and function of the Golgi appratus. The eye mutation caused mislocalization of a Golgi protein. In addition, the size of the Golgi apparatus was also altered. Thus, EYE might be involved in transport or retention of Golgi-localized proteins and in maintenance of Golgi morphology. We propose that some Golgi-localized proteins, distributions of which are controlled by EYE, play important roles in expansion of cells and organs, and in formation of the properly organized SAM in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/embriologia , Complexo de Golgi/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/química , Humanos , Meristema , Dados de Sequência Molecular , Mutação , Folhas de Planta/citologia , Alinhamento de Sequência
16.
Microbiol Resour Announc ; 8(46)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727710

RESUMO

Saccharomyces cerevisiae strain Pf-1 is a yeast isolated from Prunus mume; it potentially can be used to produce wine and traditional Japanese sake. Here, we report the draft genome sequence of this strain. The genomic information will provide a deeper understanding of the brewing characteristics of this strain.

17.
Plant Biotechnol (Tokyo) ; 36(4): 213-222, 2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31983875

RESUMO

DNA methylation in higher organisms has become an expanding field of study as it often involves the regulation of gene expression. Although Whole Genome Bisulfite Sequencing (WG-BS) based on next-generation sequencing (NGS) is the most versatile method, this is a costly technique that lacks in-depth analytic power. There are no conventional methods based on NGS that enable researchers to easily compare the level of DNA methylation from the practical number of samples handled in the laboratory. Although the targeted BS method based on Sanger sequencing is generally used in this case, it lacks in-depth analytic power. Therefore, we propose a new method that combines the high throughput analytic power of NGS and bioinformatics with the specificity and focus offered by PCR-amplification-based bisulfite sequencing methods. We use in silico size sieving of DNA-fragments and primer matchings instead of whole-fragment alignment in our bioinformatics analyses, and named our method SIMON (Simple Inference for Methylome based On NGS). The results of our targeted BS method based on NGS (SIMON method) show that small variations in DNA methylation patterns can be precisely and efficiently measured at a single nucleotide resolution. SIMON method combines pre-existing techniques to provide a cost-effective technique for in-depth studies that focus on pre-identified loci. It offers significant improvements with regard to workflow and the quality of the acquired DNA methylation information. Because of the high accuracy of the analysis, small variations of DNA methylation levels can be precisely determined even with large numbers of samples and loci.

18.
Artigo em Inglês | MEDLINE | ID: mdl-30533695

RESUMO

Saccharomyces cerevisiae strain Hm-1 is a yeast isolated from the flower of cotton rosemallow. This yeast is used for the production of Seishu, a traditional Japanese refined sake. Here, we report the strain's draft genome sequence. With this genomic information, the brewing characteristics of the strain can be better understood.

19.
Plant Biotechnol (Tokyo) ; 35(1): 39-49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31275036

RESUMO

Balanced development of adaxial and abaxial domains in leaf primordia is critical for the formation of flat symmetric leaf lamina. Arabidopsis ASYMMETRIC LEAVES1 (AS1) and AS2 proteins form a complex (AS1-AS2), which acts as key regulators for the adaxial development by the direct repression of expression of the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). Many modifier mutations have been identified, which enhance the defect of as1 and as2 mutations to generate abaxialized filamentous leaves without adaxial traits, suggesting that the development of the adaxial domain is achieved by cooperative repression by AS1-AS2 and the wild-type proteins corresponding to the modifiers. Mutations of several genes for DNA replication-related chromatin remodeling factors such as Chromatin Assembly Factor-1 (CAF-1) have been also identified as modifiers. It is still unknown, however, whether mutations in genes involved in DNA replication themselves might act as modifiers. Here we report that as1 and as2 mutants grown in the presence of hydroxyurea, a known inhibitor of DNA replication, form abaxialized filamentous leaves in a concentration-dependent manner. We further show that a mutation of the INCURVATA2 (ICU2) gene, which encodes the putative catalytic subunit of DNA polymerase α, and a mutation of the Replication Factor C Subunit3 (RFC3) gene, which encodes a protein used in replication as a clamp loader, act as modifiers. In addition, as2-1 icu2-1 double mutants showed increased mRNA levels of the genes for leaf abaxialization. These results suggest a tight link between DNA replication and the function of AS1-AS2 in the development of flat leaves.

20.
Biol Open ; 5(7): 942-54, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27334696

RESUMO

Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4 These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA