Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Blood ; 143(3): 272-278, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37879046

RESUMO

ABSTRACT: Megakaryocytes (MKs) generate thousands of platelets over their lifespan. The roles of platelets in infection and inflammation has guided an interest to the study of extramedullary thrombopoiesis and therefore MKs have been increasingly reported within the spleen and lung. However, the relative abundance of MKs in these organs compared to the bone marrow and the scale of their contribution to the platelet pool in a steady state remain controversial. We investigated the relative abundance of MKs in the adult murine bone marrow, spleen, and lung using whole-mount light-sheet and quantitative histological imaging, flow cytometry, intravital imaging, and an assessment of single-cell RNA sequencing (scRNA-seq) repositories. Flow cytometry revealed significantly higher numbers of hematopoietic stem and progenitor cells and MKs in the murine bone marrow than in spleens or perfused lungs. Two-photon intravital and light-sheet microscopy, as well as quantitative histological imaging, confirmed these findings. Moreover, ex vivo cultured MKs from the bone marrow subjected to static or microfluidic platelet production assays had a higher capacity for proplatelet formation than MKs from other organs. Analysis of previously published murine and human scRNA-seq data sets revealed that only a marginal fraction of MK-like cells can be found within the lung and most likely only marginally contribute to platelet production in the steady state.


Assuntos
Medula Óssea , Trombopoese , Camundongos , Humanos , Animais , Trombopoese/genética , Plaquetas , Megacariócitos , Baço
2.
Curr Opin Hematol ; 31(1): 1-5, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910197

RESUMO

PURPOSE OF REVIEW: Single-cell RNA sequencing studies have revealed transcriptional heterogeneity within the megakaryocytic lineage and the identified unique subsets. In this review, we discuss the functional and phenotypic plasticity of these subpopulations as well as the impacts on health and disease. RECENT FINDINGS: Megakaryocytes (MKs) can be transcriptionally categorized into platelet generating, niche supporting, immune, and cycling cells, which are distinguished by their unique gene expression patterns and cellular markers. Additionally, a significant population of these cells has been established to reside in the nonhematopoietic tissues and they display enhanced immune-related characteristics. Combined with the location in which the megakaryocytes exist, these cells can play unique roles dictated by their current environment and biological needs, including responding to changes in pathogen exposure. SUMMARY: Advances in megakaryocyte research has elucidated the existence of multiple subpopulations of MKs that serve different functions. These subpopulations implicate a greater potential for MKs to be regulators of health and suggest new avenues for treatments and therapies in related diseases.


Assuntos
Plaquetas , Megacariócitos , Humanos , Megacariócitos/metabolismo , Plaquetas/metabolismo
3.
Ann Surg ; 280(3): 463-472, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38860382

RESUMO

OBJECTIVE: The aim of this prospective study was to (1) objectively quantify the impact of sex on platelet function in patients with peripheral artery disease (PAD) taking antiplatelet and anticoagulant medications and (2) to develop and test a personalized, iterative algorithm that personalizes thromboprophylaxis that incorporates platelet function testing. BACKGROUND: Women with PAD have worse outcomes as compared with their male counterparts despite having lower risk factors. This health disparity may be mitigated by personalizing thromboprophylaxis regimens. METHODS: Patients undergoing revascularization were enrolled. Serial thromboelastography (TEG) and TEG with platelet mapping (TEG-PM) were performed up to 6 months postoperatively to determine objective coagulation profiles. In a subset of patients, the Antiplatelet Coagulation Exactness (ACE) algorithm was implemented, where patients were iteratively evaluated with TEG and given antiplatelet medications to maintain platelet inhibition at >29%. Statistical analysis was performed using unpaired t test, analysis of variance, and Fisher exact test. RESULTS: One hundred eighty-one patients met the study criteria. Fifty-eight (32%) patients were females and 123 (68%) were males. In the Aspirin cohort, females showed significantly greater clot strength as maximum amplitude - arachidonic acid (MA AA ) and significantly lower platelet inhibition than males: (37.26 vs 32.38, P <0.01) and (52.95% vs 61.65%, P <0.05), respectively. In the Clopidogrel cohort, females showed higher Maximum Amplitude - Adenosine Diphosphate (MA ADP ) (42.58 vs 40.35, P = not significant [NS]) compared with males. Females on dual antiplatelet therapy had higher MA ADP (39.74 vs 35.07, P =NS) and lower platelet inhibition (45.25% vs 54.99%, P= NS) than males. The incidence of thrombosis of the revascularized segment, defined as thrombotic event, was objectively identified on an arterial duplex. Women showed significantly higher thrombotic events than men (22.95% vs 10.57%, P< 0.05) on the same medication. In our pilot study, implementation of the ACE algorithm led to a significant decrease in the thrombosis rate (3%), including nonthrombotic events for females, versus the historic thrombotic rate (22%) from our institution. CONCLUSIONS: Women with PAD exhibited higher platelet reactivity, clot strength, and reduced platelet inhibition in response to antiplatelet therapy. The use of the ACE algorithm to tailor antiplatelet medication in patients with PAD post-revascularization, resulted in a significant decrease in thrombotic event rates. This may serve as an opportune way to mitigate outcome sex-specific disparities caused by inadequate thromboprophylaxis in women.


Assuntos
Anticoagulantes , Doença Arterial Periférica , Inibidores da Agregação Plaquetária , Tromboelastografia , Humanos , Feminino , Masculino , Inibidores da Agregação Plaquetária/uso terapêutico , Doença Arterial Periférica/cirurgia , Doença Arterial Periférica/complicações , Idoso , Estudos Prospectivos , Anticoagulantes/uso terapêutico , Fatores Sexuais , Pessoa de Meia-Idade , Algoritmos , Testes de Função Plaquetária , Trombose/prevenção & controle , Trombose/etiologia
4.
Haematologica ; 109(3): 915-928, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675512

RESUMO

Megakaryocytes (MK) undergo extensive cytoskeletal rearrangements as they give rise to platelets. While cortical microtubule sliding has been implicated in proplatelet formation, the role of the actin cytoskeleton in proplatelet elongation is less understood. It is assumed that actin filament reorganization is important for platelet generation given that mouse models with mutations in actin-associated proteins exhibit thrombocytopenia. However, due to the essential role of the actin network during MK development, a differential understanding of the contribution of the actin cytoskeleton on proplatelet release is lacking. Here, we reveal that inhibition of actin polymerization impairs the formation of elaborate proplatelets by hampering proplatelet extension and bead formation along the proplatelet shaft, which was mostly independent of changes in cortical microtubule sliding. We identify Cdc42 and its downstream effectors, septins, as critical regulators of intracellular actin dynamics in MK, inhibition of which, similarly to inhibition of actin polymerization, impairs proplatelet movement and beading. Super-resolution microscopy revealed a differential association of distinctive septins with the actin and microtubule cytoskeleton, respectively, which was disrupted upon septin inhibition and diminished intracellular filamentous actin dynamics. In vivo, septins, similarly to F-actin, were subject to changes in expression upon enforcing proplatelet formation through prior platelet depletion. In summary, we demonstrate that a Cdc42/septin axis is not only important for MK maturation and polarization, but is further required for intracellular actin dynamics during proplatelet formation.


Assuntos
Actinas , Megacariócitos , Animais , Camundongos , Septinas , Plaquetas , Citoesqueleto de Actina
5.
Am J Hematol ; 99 Suppl 1: S6-S12, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400527

RESUMO

Women with peripheral artery disease (PAD) have poorer limb salvage outcomes in spite of having lower risk factors for vascular disease than their male counterparts. Mono antiplatelet therapy with aspirin is the cornerstone of medical treatment for PAD to reduce the risk of arterial thrombosis, but platelets in women may have a variable response to this standard of care compared to men. Viscoelastic assays, such as thromboelastography with platelet mapping (TEG-PM), have been utilized to identify prothrombotic states and may provide insight into a patient's real-time coagulation profile and their response to specific antiplatelet medications. The aim of this prospective, observational study was to delineate the sex differences in platelet function using TEG-PM in patients with PAD on aspirin post-revascularization for PAD. All patients with PAD undergoing revascularization on aspirin monotherapy were prospectively enrolled between December 2020 and September 2023. The cohort was divided by sex, demographics, medications, procedure type, and outcomes were documented. Serial perioperative TEG-PM assays (1, 3, and 6 months) were performed up to 6 months postoperatively and platelet function was evaluated in both groups. Statistical analysis between women and men was performed to identify sex-specific differences in platelet function. Over the study period, a total of 303 patients were enrolled. Of this cohort, 149 patients met the study criteria and 266 samples were analyzed; 52 (34.89%) were women and 97 (65.11%) were men. In the platelet mapping assay, women showed significantly greater MAActF and MAAA, than men (16.66 vs. 14.94, p < .03 and 37.26 vs. 32.38, p < .01, respectively) indicating stronger thrombotic propensity. Additionally, platelet inhibition was significantly lower in women compared to men (52.95% vs. 61.65%, p < .05). In clinical outcomes reported as thrombotic events, women showed significantly higher occlusion in the area of intervention than men (4 vs. 1, p < .05). There is a growing awareness of the variations in the natural course, underlying mechanisms, and resulting outcomes of cardiovascular conditions, including PAD, in relation to sex. In this study, women did not achieve the same levels of platelet inhibition and displayed a procoagulant tendency in comparison to men when administered aspirin. Overall, aspirin monotherapy may be potentially sufficient for men, but women may require increased doses and/or additional antiplatelet medications to achieve an equivalent therapeutic effect.


Assuntos
Doença Arterial Periférica , Trombose , Humanos , Feminino , Masculino , Aspirina/uso terapêutico , Estudos Prospectivos , Inibidores da Agregação Plaquetária/uso terapêutico , Doença Arterial Periférica/complicações , Doença Arterial Periférica/tratamento farmacológico , Doença Arterial Periférica/cirurgia , Plaquetas , Trombose/etiologia
6.
Ann Vasc Surg ; 109: 273-283, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069123

RESUMO

BACKGROUND: Graft/stent thrombosis is the leading cause of amputation in patients over 60, and while dual antiplatelet therapy is the standard of care, there is a significant variability in platelet response and limited guidance on measuring effectiveness. Thromboelastography with platelet mapping (TEG-PM) can objectively detail an individual's coagulation profile, namely the strength of the clot and its response to antiplatelet medication. Although TEG-PM has been used for predicting postoperative bleeding and assessing platelet dysfunction in traumatic brain injury, its application in thrombosis diseases such as peripheral artery disease remains unexplored. The aim of this observational study was to determine if objective measures of clot strength could predict a high clinical risk of thrombosis. METHODS: Patients >60 years with peripheral artery disease undergoing revascularization were prospectively evaluated from 2021 to 2023. They were clinically followed for 1 year to detect any thrombotic events. TEG-PM was used to objectively evaluate coagulation profiles in patients at 1, 3, 6, and 9 months. These follow-up periods were chosen based on studies showing that 1-3 month intervals in the first year after lower extremity revascularization optimize therapy and risk control. The TEG-PM data preceding a thrombotic/stenotic event in patients with thrombosis was compared to the last known well TEG-PM event in those without a thrombotic/stenotic event. We stratified the groups based on the occurrence of thrombosis/stenotic events. Descriptive statistics were applied to characterize each group and a chi-square test was conducted to assess the variance between both groups. An unpaired t-test was run to identify differences in platelet function. Receiver operating characteristic analysis was performed to determine the optimal TEG-PM cutoff for predicting a higher risk of thrombosis. RESULTS: One hundred and fifty-eight patients were analyzed, from whom 28 (17.7%) experienced a thrombotic event. The thrombosis cohort exhibited significantly greater MAADP, MAFibrin, and MAThrombin [50.2 vs. 40.0, P < 0.05], [18.19 vs. 14.64, P < 0.05], and [63.8 vs. 58.5, P < 0.05], respectively, indicative of greater clot strength. By receiver operating characteristic analysis, the optimal predictor cut-off for MAADP, indicating a higher risk of thrombosis, was >42 mm [P < 0.05] with 82% sensitivity and 50% specificity. CONCLUSIONS: An increase in clot strength was found to be predictive of thrombosis/stenosis within 30 days. Using a MAADP cut-off greater than 42 mm might serve as an alternative approach to tailor the use of antiplatelet medication, potentially reducing the risk of thrombosis.

7.
Blood ; 136(25): 2933-2945, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33331924

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease characterized by deposits of immune complexes (ICs) in organs and tissues. The expression of FcγRIIA by human platelets, which is their unique receptor for immunoglobulin G antibodies, positions them to ideally respond to circulating ICs. Whereas chronic platelet activation and thrombosis are well-recognized features of human SLE, the exact mechanisms underlying platelet activation in SLE remain unknown. Here, we evaluated the involvement of FcγRIIA in the course of SLE and platelet activation. In patients with SLE, levels of ICs are associated with platelet activation. Because FcγRIIA is absent in mice, and murine platelets do not respond to ICs in any existing mouse model of SLE, we introduced the FcγRIIA (FCGR2A) transgene into the NZB/NZWF1 mouse model of SLE. In mice, FcγRIIA expression by bone marrow cells severely aggravated lupus nephritis and accelerated death. Lupus onset initiated major changes to the platelet transcriptome, both in FcγRIIA-expressing and nonexpressing mice, but enrichment for type I interferon response gene changes was specifically observed in the FcγRIIA mice. Moreover, circulating platelets were degranulated and were found to interact with neutrophils in FcγRIIA-expressing lupus mice. FcγRIIA expression in lupus mice also led to thrombosis in lungs and kidneys. The model recapitulates hallmarks of human SLE and can be used to identify contributions of different cellular lineages in the manifestations of SLE. The study further reveals a role for FcγRIIA in nephritis and in platelet activation in SLE.


Assuntos
Autoanticorpos/imunologia , Plaquetas/imunologia , Imunoglobulina G/imunologia , Nefrite Lúpica/imunologia , Ativação Plaquetária/imunologia , Receptores de IgG/imunologia , Animais , Autoanticorpos/genética , Plaquetas/patologia , Modelos Animais de Doenças , Imunoglobulina G/genética , Nefrite Lúpica/genética , Nefrite Lúpica/patologia , Camundongos , Camundongos Transgênicos , Ativação Plaquetária/genética , Receptores de IgG/genética
8.
Arterioscler Thromb Vasc Biol ; 41(1): 87-96, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028092

RESUMO

Extracellular vesicles (EVs) are a means of cell-to-cell communication and can facilitate the exchange of a broad array of molecules between adjacent or distant cells. Platelets are anucleate cells derived from megakaryocytes and are primarily known for their role in maintaining hemostasis and vascular integrity. Upon activation by a variety of agonists, platelets readily generate EVs, which were initially identified as procoagulant particles. However, as both platelets and their EVs are abundant in blood, the role of platelet EVs in hemostasis may be redundant. Moreover, findings have challenged the significance of platelet-derived EVs in coagulation. Looking beyond hemostasis, platelet EV cargo is incredibly diverse and can include lipids, proteins, nucleic acids, and organelles involved in numerous other biological processes. Furthermore, while platelets cannot cross tissue barriers, their EVs can enter lymph, bone marrow, and synovial fluid. This allows for the transfer of platelet-derived content to cellular recipients and organs inaccessible to platelets. This review highlights the importance of platelet-derived EVs in physiological and pathological conditions beyond hemostasis.


Assuntos
Plaquetas/metabolismo , Comunicação Celular , Micropartículas Derivadas de Células/metabolismo , Hemostasia , Ativação Plaquetária , Animais , Medula Óssea/metabolismo , Micropartículas Derivadas de Células/transplante , Humanos , Mediadores da Inflamação/sangue , Linfa/metabolismo , Líquido Sinovial/metabolismo
9.
Circulation ; 142(6): e85-e94, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32776842

RESUMO

Venous thromboembolism is a major cause of morbidity and mortality. The impact of the US Surgeon General's The Surgeon General's Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism in 2008 has been lower than expected given the public health impact of this disease. This scientific statement highlights future research priorities in venous thromboembolism, developed by experts and a crowdsourcing survey across 16 scientific organizations. At the fundamental research level (T0), researchers need to identify pathobiological causative mechanisms for the 50% of patients with unprovoked venous thromboembolism and to better understand mechanisms that differentiate hemostasis from thrombosis. At the human level (T1), new methods for diagnosing, treating, and preventing venous thromboembolism will allow tailoring of diagnostic and therapeutic approaches to individuals. At the patient level (T2), research efforts are required to understand how foundational evidence impacts care of patients (eg, biomarkers). New treatments, such as catheter-based therapies, require further testing to identify which patients are most likely to experience benefit. At the practice level (T3), translating evidence into practice remains challenging. Areas of overuse and underuse will require evidence-based tools to improve care delivery. At the community and population level (T4), public awareness campaigns need thorough impact assessment. Large population-based cohort studies can elucidate the biological and environmental underpinnings of venous thromboembolism and its complications. To achieve these goals, funding agencies and training programs must support a new generation of scientists and clinicians who work in multidisciplinary teams to solve the pressing public health problem of venous thromboembolism.


Assuntos
Hemostasia/fisiologia , Trombose/diagnóstico , Tromboembolia Venosa/diagnóstico , American Heart Association , Biomarcadores , Medicina Baseada em Evidências , Prova Pericial , Humanos , Guias de Prática Clínica como Assunto , Pesquisa , Pesquisa Translacional Biomédica , Estados Unidos , Tromboembolia Venosa/terapia
10.
Platelets ; 32(7): 928-935, 2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-32936668

RESUMO

Megakaryocytes (MKs) are relatively rare in bone marrow, comprising <0.05% of the nucleated cells, which makes direct isolation from human bone marrow impractical. As such, in vitro expansion of primary MKs from patient samples offers exciting fundamental and clinical opportunities. As most of the developed ex vivo methods require a substantial volume of biomaterial, they are not widely performed on young patients. Here we propose a simple, robust, and adapted method of primary human MK culture from 1 mL of bone marrow aspirate. Our technique uses a small volume of bone marrow per culture, uses straightforward isolation methods, and generates approximately 6 × 105 mature MKs per culture. The relative high cell purity and yield achieved by this technique, combined with efficient use of low volumes of bone marrow, make this approach suitable for diagnostic and basic research of human megakaryopoiesis.


Assuntos
Células da Medula Óssea/patologia , Megacariócitos/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos
11.
Proc Natl Acad Sci U S A ; 115(7): E1550-E1559, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29386381

RESUMO

There is a growing appreciation for the contribution of platelets to immunity; however, our knowledge mostly relies on platelet functions associated with vascular injury and the prevention of bleeding. Circulating immune complexes (ICs) contribute to both chronic and acute inflammation in a multitude of clinical conditions. Herein, we scrutinized platelet responses to systemic ICs in the absence of tissue and endothelial wall injury. Platelet activation by circulating ICs through a mechanism requiring expression of platelet Fcγ receptor IIA resulted in the induction of systemic shock. IC-driven shock was dependent on release of serotonin from platelet-dense granules secondary to platelet outside-in signaling by αIIbß3 and its ligand fibrinogen. While activated platelets sequestered in the lungs and leaky vasculature of the blood-brain barrier, platelets also sequestered in the absence of shock in mice lacking peripheral serotonin. Unexpectedly, platelets returned to the blood circulation with emptied granules and were thereby ineffective at promoting subsequent systemic shock, although they still underwent sequestration. We propose that in response to circulating ICs, platelets are a crucial mediator of the inflammatory response highly relevant to sepsis, viremia, and anaphylaxis. In addition, platelets recirculate after degranulation and sequestration, demonstrating that in adaptive immunity implicating antibody responses, activated platelets are longer lived than anticipated and may explain platelet count fluctuations in IC-driven diseases.


Assuntos
Anafilaxia/imunologia , Complexo Antígeno-Anticorpo/imunologia , Plaquetas/imunologia , Serotonina/imunologia , Choque Séptico/imunologia , Adulto , Anafilaxia/sangue , Anafilaxia/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação Plaquetária , Contagem de Plaquetas , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/imunologia , Receptores de IgG/genética , Receptores de IgG/imunologia , Choque Séptico/sangue , Choque Séptico/genética , Adulto Jovem
12.
Arterioscler Thromb Vasc Biol ; 39(7): 1288-1300, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31043076

RESUMO

Megakaryocytes are hematopoietic cells, which are responsible for the production of blood platelets. The traditional view of megakaryopoiesis describes the cellular journey from hematopoietic stem cells, through a hierarchical series of progenitor cells, ultimately to a mature megakaryocyte. Once mature, the megakaryocyte then undergoes a terminal maturation process involving multiple rounds of endomitosis and cytoplasmic restructuring to allow platelet formation. However, recent studies have begun to redefine this hierarchy and shed new light on alternative routes by which hematopoietic stem cells are differentiated into megakaryocytes. In particular, the origin of megakaryocytes, including the existence and hierarchy of megakaryocyte progenitors, has been redefined, as new studies are suggesting that hematopoietic stem cells originate as megakaryocyte-primed and can bypass traditional lineage checkpoints. Overall, it is becoming evident that megakaryopoiesis does not only occur as a stepwise process, but is dynamic and adaptive to biological needs. In this review, we will reexamine the canonical dogmas of megakaryopoiesis and provide an updated framework for interpreting the roles of traditional pathways in the context of new megakaryocyte biology. Visual Overview- An online visual overview is available for this article.


Assuntos
Células-Tronco Hematopoéticas/citologia , Megacariócitos/citologia , Células da Medula Óssea/fisiologia , Comunicação Celular , Ciclo Celular , Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas/fisiologia , Humanos , Inflamação/fisiopatologia , Megacariócitos/fisiologia , Transdução de Sinais , Trombopoese , Trombopoetina/farmacologia , Fatores de Transcrição/fisiologia
13.
Blood ; 130(9): 1132-1143, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28630120

RESUMO

Selinexor is the first oral selective inhibitor of nuclear export compound tested for cancer treatment. Selinexor has demonstrated a safety therapy profile with broad antitumor activity against solid and hematological malignancies in phases 2 and 3 clinical trials (#NCT03071276, #NCT02343042, #NCT02227251, #NCT03110562, and #NCT02606461). Although selinexor shows promising efficacy, its primary adverse effect is high-grade thrombocytopenia. Therefore, we aimed to identify the mechanism of selinexor-induced thrombocytopenia to relieve it and improve its clinical management. We determined that selinexor causes thrombocytopenia by blocking thrombopoietin (TPO) signaling and therefore differentiation of stem cells into megakaryocytes. We then used both in vitro and in vivo models and patient samples to show that selinexor-induced thrombocytopenia is indeed reversible when TPO agonists are administered in the absence of selinexor (drug holiday). In sum, these data reveal (1) the mechanism of selinexor-induced thrombocytopenia, (2) an effective way to reverse the dose-limiting thrombocytopenia, and (3) a novel role for XPO1 in megakaryopoiesis. The improved selinexor dosing regimen described herein is crucial to help reduce thrombocytopenia in selinexor patients, allowing them to continue their course of chemotherapy and have the best chance of survival. This trial was registered at www.clinicaltrials.gov as #NCT01607905.


Assuntos
Hidrazinas/efeitos adversos , Megacariócitos/metabolismo , Megacariócitos/patologia , Transdução de Sinais/efeitos dos fármacos , Trombocitopenia/induzido quimicamente , Trombocitopenia/metabolismo , Trombopoese/efeitos dos fármacos , Trombopoetina/metabolismo , Triazóis/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/patologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feto/patologia , Fígado/embriologia , Megacariócitos/efeitos dos fármacos , Megacariócitos/ultraestrutura , Camundongos Knockout , Ativação Plaquetária/efeitos dos fármacos , Células-Tronco/citologia , Trombocitopenia/sangue
15.
Curr Opin Hematol ; 25(5): 410-415, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985173

RESUMO

PURPOSE OF REVIEW: Platelets are small, anucleate cells that circulate within the blood and play essential roles in preserving vascular integrity. However, abnormalities in either platelet production or destruction can result in thrombocytopenia, clinically defined by a platelet count lower than 150 000/µL of whole blood. Thrombocytopenia is frequently associated with impaired hemostatic responses to vascular injury and can be life-threatening because of bleeding complications. Megakaryocytes are the precursor cells responsible for platelet production, a process commonly referred to as thrombopoiesis. This review specifically discusses how perturbation of molecular mechanisms governing megakaryocyte differentiation and development manifest in various forms of thrombocytopenia. RECENT FINDINGS: This review highlights the identification of novel transcriptional regulators of megakaryocyte maturation and platelet production. We also provide an update into the essential role of cytoskeletal regulation in thrombopoiesis, and how both megakaryopoiesis and platelet production are altered by anticancer therapeutics. Lastly, we focus on recent investigative approaches to treat thrombocytopenia and discuss future prospects in the field of megakaryocyte research. SUMMARY: In patients where thrombocytopenia is not due to heightened platelet destruction or clearance, defects in megakaryocyte development should be considered.


Assuntos
Plaquetas/metabolismo , Hemostasia , Megacariócitos/metabolismo , Trombocitopenia/metabolismo , Trombopoese , Animais , Plaquetas/patologia , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Hemorragia/metabolismo , Hemorragia/patologia , Humanos , Megacariócitos/patologia , Contagem de Plaquetas , Trombocitopenia/patologia
16.
Blood ; 127(7): 921-6, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26647394

RESUMO

In times of physiological stress, platelet count can transiently rise. What initiates this reactive thrombocytosis is poorly understood. Intriguingly, we found that treating megakaryocytes (MKs) with the releasate from activated platelets increased proplatelet production by 47%. Platelets store inflammatory cytokines, including the chemokine ligand 5 (CCL5, RANTES); after TRAP activation, platelets release over 25 ng/mL CCL5. We hypothesized that CCL5 could regulate platelet production by binding to its receptor, CCR5, on MKs. Maraviroc (CCR5 antagonist) or CCL5 immunodepletion diminished 95% and 70% of the effect of platelet releasate, respectively, suggesting CCL5 derived from platelets is sufficient to drive increased platelet production through MK CCR5. MKs cultured with recombinant CCL5 increased proplatelet production by 50% and had significantly higher ploidy. Pretreating the MK cultures with maraviroc prior to exposure to CCL5 reversed the augmented proplatelet formation and ploidy, suggesting that CCL5 increases MK ploidy and proplatelet formation in a CCR5-dependent manner. Interrogation of the Akt signaling pathway suggested that CCL5/CCR5 may influence proplatelet production by suppressing apoptosis. In an in vivo murine acute colitis model, platelet count significantly correlated with inflammation whereas maraviroc treatment abolished this correlation. We propose that CCL5 signaling through CCR5 may increase platelet counts during physiological stress.


Assuntos
Plaquetas/metabolismo , Quimiocina CCL5/metabolismo , Megacariócitos/patologia , Transdução de Sinais/fisiologia , Animais , Plaquetas/citologia , Quimiocina CCL5/genética , Cicloexanos/farmacologia , Humanos , Maraviroc , Megacariócitos/citologia , Camundongos , Receptores CCR5/genética , Receptores CCR5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triazóis/farmacologia
17.
Blood ; 127(11): 1468-80, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26744461

RESUMO

Platelets are essential for hemostasis, and thrombocytopenia is a major clinical problem. Megakaryocytes (MKs) generate platelets by extending long processes, proplatelets, into sinusoidal blood vessels. However, very little is known about what regulates proplatelet formation. To uncover which proteins were dynamically changing during this process, we compared the proteome and transcriptome of round vs proplatelet-producing MKs by 2D difference gel electrophoresis (DIGE) and polysome profiling, respectively. Our data revealed a significant increase in a poorly-characterized MK protein, myristoylated alanine-rich C-kinase substrate (MARCKS), which was upregulated 3.4- and 5.7-fold in proplatelet-producing MKs in 2D DIGE and polysome profiling analyses, respectively. MARCKS is a protein kinase C (PKC) substrate that binds PIP2. In MKs, it localized to both the plasma and demarcation membranes. MARCKS inhibition by peptide significantly decreased proplatelet formation 53%. To examine the role of MARCKS in the PKC pathway, we treated MKs with polymethacrylate (PMA), which markedly increased MARCKS phosphorylation while significantly inhibiting proplatelet formation 84%, suggesting that MARCKS phosphorylation reduces proplatelet formation. We hypothesized that MARCKS phosphorylation promotes Arp2/3 phosphorylation, which subsequently downregulates proplatelet formation; both MARCKS and Arp2 were dephosphorylated in MKs making proplatelets, and Arp2 inhibition enhanced proplatelet formation. Finally, we used MARCKS knockout (KO) mice to probe the direct role of MARCKS in proplatelet formation; MARCKS KO MKs displayed significantly decreased proplatelet levels. MARCKS expression and signaling in primary MKs is a novel finding. We propose that MARCKS acts as a "molecular switch," binding to and regulating PIP2 signaling to regulate processes like proplatelet extension (microtubule-driven) vs proplatelet branching (Arp2/3 and actin polymerization-driven).


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Megacariócitos/metabolismo , Proteínas de Membrana/fisiologia , Processamento de Proteína Pós-Traducional , Trombopoese/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Sequência de Aminoácidos , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/metabolismo , Animais , Apoptose , Plaquetas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Fígado/citologia , Fígado/embriologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Substrato Quinase C Rico em Alanina Miristoilada , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteína Quinase C/metabolismo , Transdução de Sinais
18.
Arterioscler Thromb Vasc Biol ; 37(4): 664-674, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28153880

RESUMO

OBJECTIVE: Platelets, which are mainly known for their role in hemostasis, are now known to play a crucial role in metastasis. Tamoxifen is a selective estrogen receptor modulator that is widely used for the treatment of breast cancer. Tamoxifen and its metabolites have been shown to directly impact platelet function, suggesting that this drug has additional mechanisms of action. The purpose of this study was to determine whether tamoxifen exerts antitumor effects through direct platelet inhibition. APPROACH AND RESULTS: This study found that pretreatment with tamoxifen leads to a significant inhibition of platelet activation. Platelets exposed to tamoxifen released significantly lower amounts of proangiogenic regulator vascular endothelial growth factor. In vitro angiogenesis assays confirmed that tamoxifen pretreatment led to diminished capillary tube formation and decreased endothelial migration. Tamoxifen and its metabolite, 4-hydroxytamoxifen, also significantly inhibited the ability of platelets to promote metastasis in vitro. Using a membrane-based array, we identified several proteins associated with angiogenesis metastasis that were lower in activated releasate from tamoxifen-treated platelets, including angiogenin, chemokine (C-X-C motif) ligand 1, chemokine (C-C motif) ligand 5, epidermal growth factor, chemokine (C-X-C motif) ligand 5, platelet-derived growth factor dimeric isoform BB, whereas antiangiogenic angiopoietin-1 was elevated. Platelets isolated from patients on tamoxifen maintenance therapy were also found to have decreased activation responses, diminished vascular endothelial growth factor release, and lower angiogenic and metastatic potential. CONCLUSIONS: We demonstrate that tamoxifen and its metabolite 4-hydroxytamoxifen directly alter platelet function leading to decreased angiogenic and metastatic potential. Furthermore, this study supports the idea of utilizing targeted platelet therapies to inhibit the platelet's role in angiogenesis and malignancy.


Assuntos
Inibidores da Angiogênese/farmacologia , Plaquetas/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Tamoxifeno/análogos & derivados , Plaquetas/metabolismo , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células MCF-7 , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Platelets ; 29(6): 583-588, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30047825

RESUMO

Megakaryocytes (MKs) are specialized precursor cells committed to producing and proliferating platelets. In a cytoskeletal-driven process, mature MKs generate platelets by releasing thin cytoplasmic extensions, named proplatelets, into the sinusoids. Due to knowledge gaps in this process and mounting clinical demand for non-donor-based platelet sources, investigators are successfully developing artificial culture systems to recreate the environment of platelet biogenesis. Nevertheless, drawbacks in current methods entail elaborate procedures for stem cell enrichment, extensive growth periods, low MK yield, and poor proplatelet production. We propose a simple, robust method of primary MK culture that utilizes fetal livers from pregnant mice. Our technique reduces expansion time to 4 days, and generates ~15,000-20,000 MKs per liver. Approximately, 20-50% of these MKs produce structurally dense, high-quality proplatelets. In this review, we outline our method of MK culture and isolation.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Técnicas In Vitro/métodos , Megacariócitos/metabolismo , Humanos
20.
Blood ; 134(10): 791-792, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488457
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA