Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613884

RESUMO

Band bending modification of metal/semiconductor hybrid nanostructures requires low-cost and effective designs in photoelectrochemical (PEC) water splitting. To this end, it is evinced that gradient doping of Au nanoparticles (NPs) inwards the ZnO nanorods (NRs) through thermal treatment facilitated faster transport of the photo-induced charge carriers. Systematic PEC measurements show that the resulting gradient Au-doped ZnO NRs yielded a photocurrent density of 0.009 mA/cm2 at 1.1 V (vs. NHE), which is 2.5-fold and 8-fold improved compared to those of Au-sensitized ZnO and the as-prepared ZnO NRs, respectively. The IPCE and ABPE efficiency tests confirmed the boosted photoresponse of gradient Au-incorporated ZnO NRs, particularly in the visible spectrum due to the synergistic surface plasmonic effect of Au NPs. A gradient Au dopant profile promoted the separation and transfer of the photo-induced charge carriers at the electrolyte interface via more upward band bending according to the elaborated electrochemical impedance spectroscopy and Kelvin probe force microscopy analyses. Therefore, this research presents an economical and facile strategy for preparing gradient plasmonic noble NP-incorporated semiconductor NRs, which have excellent potential in energy conversion and storage technologies.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanotubos , Óxido de Zinco , Ouro
2.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269754

RESUMO

CuxCo1-xFe2O4 (x = 0.33, 0.67, 1)-reduced graphene oxide (rGO)-thermoplastic polyurethane (TPU) nanocomposites exhibiting highly efficient electromagnetic interference (EMI) shielding were prepared by a melt-mixing approach using a microcompounder. Spinel ferrite Cu0.33Co0.67Fe2O4 (CuCoF1), Cu0.67Co0.33Fe2O4 (CuCoF2) and CuFe2O4 (CuF3) nanoparticles were synthesized using the sonochemical method. The CuCoF1 and CuCoF2 exhibited typical ferromagnetic features, whereas CuF3 displayed superparamagnetic characteristics. The maximum value of EMI total shielding effectiveness (SET) was noticed to be 42.9 dB, 46.2 dB, and 58.8 dB for CuCoF1-rGO-TPU, CuCoF2-rGO-TPU, and CuF3-rGO-TPU nanocomposites, respectively, at a thickness of 1 mm. The highly efficient EMI shielding performance was attributed to the good impedance matching, conductive, dielectric, and magnetic loss. The demonstrated nanocomposites are promising candidates for a lightweight, flexible, and highly efficient EMI shielding material.


Assuntos
Nanocompostos , Nanopartículas , Óxido de Alumínio , Compostos Férricos , Grafite , Óxido de Magnésio , Poliuretanos
3.
Sensors (Basel) ; 19(14)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336783

RESUMO

This work focuses on an inkjet-fabricated sensor based on copper oxide nanostructured particles on polymer flexible substrate for the sensing of alcohol vapours and humidity at room temperature. Nanoparticles were prepared by a microwave-assisted solvothermal sealed vessel synthesis method. The ink composition was developed on the basis of viscosity and surface tension optimization by the addition of polymeric steric surfactant and dispersant. The printing process was optimized with the help of non-dimensional criteria. Silver nanoink was used for the printing of an interdigitated pattern on a PET substrate which was overprinted by the copper oxide ink, thus obtaining a flexible flat sensor. Material design and all fabrication steps of the sensor respected the temperature limitation given by the thermal stability of the polymer substrate. Printed layers and motifs were characterized microscopically and by resistance measurement. The effectiveness of the prepared sensor was demonstrated and studied by measuring the response to saturated vapours at room temperature. The sensing layer showed the opposite resistance response to stimuli than expected for the well-known p-type sensing mechanism of CuO sensors operated at high temperatures. In addition to vapour sorption, condensation and desorption influencing electron, proton and ionic conductivity, manifestation of another mechanism was observed and an explanation suggested in terms of the electrochemical mechanism.

4.
Sensors (Basel) ; 18(10)2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30261700

RESUMO

This study is focused on the development of water-based ITO nanoparticle dispersions and ink-jet fabrication methodology of an indium tin oxide (ITO) sensor for room temperature operations. Dimensionless correlations of material-tool-process variables were used to map the printing process and several interpretational frameworks were re-examined. A reduction of the problem to the Newtonian fluid approach was applied for the sake of simplicity. The ink properties as well as the properties of the deposited layers were tested for various nanoparticles loading. High-quality films were prepared and annealed at different temperatures. The best performing material composition, process parameters and post-print treatment conditions were used for preparing the testing sensor devices. Printed specimens were exposed to toluene vapours at room temperature. Good sensitivity, fast responses and recoveries were observed in ambient air although the n-type response mechanism to toluene is influenced by moisture in air and baseline drift was observed. Sensing response inversion was observed in an oxygen and moisture-free N2 atmosphere which is explained by the charge-transfer mechanism between the adsorbent and adsorbate molecules. The sensitivity of the device was slightly better and the response was stable showing no drifts in the protective atmosphere.

5.
J Mater Sci Mater Med ; 25(11): 2501-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25029999

RESUMO

Hybrid inorganic-organic fillers based on nanostructured silver/zinc oxide decorations on micro-cellulose carrier particles were prepared by stepwise microwave assisted hydrothermal synthesis using soluble salts as precursors of silver and zinc oxide. Hexamethylenetetramine was used as precipitating agent for zinc oxide and reducing agent for silver. The inorganics covered all available surfaces of the cellulose particles with a morphology resembling a coral reef. Prepared particulate fillers were compounded to medical grade poly(vinyl chloride) matrix. Scanning electron microscopy and powder X-ray diffractometry were used to investigate the morphology and crystalline phase structure of fillers. The scanning electron microscopy was used for morphological study of composites. With respect to prospective application, the composites were tested on electrical and antibacterial properties. A small effect of water absorption in polymer composites on their dielectric properties was observed but no adverse effect of water exposure on prepared materials was manifested. Electrical conductivity of fillers and composites was measured and no influence of water soaking of composites was found at all. The surface antibacterial activity of prepared composites was evaluated according to the standard ISO 22196. Excellent performance against Escherichia coli and very high against Staphylococcus aureus was achieved.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Celulose/química , Nanocompostos/química , Cloreto de Polivinila/química , Prata/química , Óxido de Zinco/química , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/síntese química , Sobrevivência Celular/fisiologia , Teste de Materiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanocompostos/ultraestrutura , Tamanho da Partícula , Pós , Prata/farmacologia , Propriedades de Superfície
6.
Nanoscale Adv ; 6(8): 2149-2165, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633039

RESUMO

The rapid growth, integration, and miniaturization of electronics have raised significant concerns about how to handle issues with electromagnetic interference (EMI), which has increased demand for the creation of EMI shielding materials. In order to effectively shield against electromagnetic interference (EMI), this study developed a variety of thermoplastic polyurethane (TPU)-based nanocomposites in conjunction with CoFe2O4 nanoparticles and graphite. The filler percentage and nanocomposite thickness were tuned and optimized. The designed GF15-TPU nanocomposite, which has a 5 mm thickness, 15 weight percent cobalt ferrite nanoparticles, and 35 weight percent graphite, showed the highest total EMI shielding effectiveness value of 41.5 dB in the 8.2-12.4 GHz frequency range, or 99.993% shielding efficiency, out of all the prepared polymer nanocomposites. According to experimental findings, the nanocomposite's dipole polarization, interfacial polarization, conduction loss, eddy current loss, natural resonance, exchange resonance, multiple scattering, and high attenuation significantly contribute to improving its electromagnetic interference shielding properties. The created TPU-based nanocomposites containing graphite and CoFe2O4 nanoparticles have the potential to be used in communication systems, defense, spacecraft, and aircraft as EMI shielding materials.

7.
Chemosphere ; 365: 143327, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39271077

RESUMO

The pollution of wastewater with pharmaceuticals and endocrine-disrupting chemicals (EDCs) in populated areas poses a growing threat to humans and ecosystems. To address this serious problem, various one-dimensional (1D) hierarchical ZnO-based nanostructures inspired by Anelosimus eximius cobwebs were developed and successfully grown on a glass substrate through simple hydrothermal synthesis. The nanorods (nr) obtained during primary growth were chemically etched with KOH (ZnOnr-KOH), followed by the secondary growth of nano cobweb-like (ncw) structures using polyethyleneimine (ZnOnr/ncw). These structures were further decorated by the photoreduction of Ag nanoparticles (ZnOnr/ncw/Ag). The feasibility of ZnO-based 1D nanostructures to remove pollutants was demonstrated by degrading commonly prescribed pharmaceutical drugs (diclofenac and carbamazepine) in a miniature cuvette reactor. The photocatalytic activities for drug degradation generally decreased in the order ZnOnr/ncw/Ag > ZnOnr/ncw > ZnOnr-KOH. Additionally, the suitability of the samples for scaling up and practical application was demonstrated by photocatalytic degradation of the hormone estriol (E3) in a flow-through photoreactor. The photocatalytic degradation efficiency of E3 followed the same trend observed for drug degradation, with the complete elimination of the endocrine disruptor achieved by the best-performing ZnOnr/ncw/Ag within 4 h, due to optimized charge transfer and separation at the heterostructure interface.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Óxido de Zinco , Óxido de Zinco/química , Disruptores Endócrinos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Recuperação e Remediação Ambiental/métodos , Animais , Nanoestruturas/química , Prata/química , Águas Residuárias/química , Nanopartículas Metálicas/química , Diclofenaco/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/análise , Catálise , Carbamazepina/química
8.
Chemosphere ; 364: 143169, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39181459

RESUMO

In this work, polyvinylidene fluoride (PVDF) intercalated CuFe layered double hydroxides (LDH) membranes were fabricated and investigated for UV-LED/persulfate degradation of methylene blue (MB), crystal violet (CV), methyl orange (MO), and Eriochrome black T (EBT) dyes from water. The PVDF-CuFe membrane exhibited improved heterogeneity, surface functionality (CuO, Fe-O, Cu-O-Fe), surface roughness, and hydrophilicity. The process parameters were optimized by response surface methodology, and maximum MB removal (100%) was achieved within 45.22-178.5 min at MB concentration (29.45-101.93 mg/L), PP concentration (0.5-2.41 g/L) and catalyst dosage (1.84-1.95 g/L). The degradation kinetics was well described by a pseudo-first-order model (R2 = 0.982) and fast reaction rate (0.029-0.089/min). The MB dye degradation mechanism is associated with HO·/SO4•- reactive species generated by Fe3+/Fe2+ or Cu2+/Cu+ in PVDF-CuFe membrane and PP dissociation. The PVDF-CuFe membrane demonstrated excellent recyclability performance with a 12% reduction after five consecutive cycles. The catalytic membrane showed excellent photocatalytic degradation of crystal violet (100%), methyl orange (79%), and Eriochrome black T (60%). The results showed that UV-LED/persulfate-assisted PVDF-CuFe membranes can be used as a recyclable catalyst for the effective degradation of dye-contaminated water streams.


Assuntos
Compostos Azo , Corantes , Hidróxidos , Azul de Metileno , Polivinil , Poluentes Químicos da Água , Corantes/química , Poluentes Químicos da Água/química , Hidróxidos/química , Compostos Azo/química , Catálise , Azul de Metileno/química , Polivinil/química , Violeta Genciana/química , Cinética , Purificação da Água/métodos , Cobre/química , Recuperação e Remediação Ambiental/métodos , Polímeros de Fluorcarboneto
9.
Nanoscale Adv ; 5(11): 3091-3103, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37260485

RESUMO

The impact of geometric features, light absorption spectra, and electrochemical active surface area on photoelectrochemical properties was investigated in this work. Nanoforests of ZnO nanorods with rationally controlled morphologies were grown on ITO substrates by the hydrothermal method and utilized as a model for this purpose. The size of the nanorods was systematically adjusted by varying the concentration of polyethyleneimine as a cation surfactant in the growth solution. It was found that the emergent geometric characteristics (i.e. the aspect ratio) increased almost at the same pace as the electrochemically active surface area, but the light scattering effect slightly increased as a result of the random spatial orientation of the nanorods. The large surface area and the void space between nanorods increased the photon-to-current conversion efficiency by promoting the hole transfer process at the electrode/electrolyte interface. A maximum photocurrent density of 0.06 mA cm-2 (0.5 V vs. NHE) for smaller diameter and length ZnO nanorods (ZnO-P1) was obtained under 365 nm UV light illumination. Additionally, we provide visual evidence that a shorter photogenerated hole diffusion distance results in improved charge separation efficiency using Mn2+ as the photogenerated hole imaging agent. Therefore, the present work demonstrates a facile strategy for nanoforest morphology improvement for generating strong contact at the ZnO NR electrode/electrolyte interface, which is favourable in energy conversion and storage technologies.

10.
Nanoscale Adv ; 3(22): 6358-6372, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36133492

RESUMO

Nitrogen fixation is considered one of the grand challenges of the 21st century for achieving the ultimate vision of a green and sustainable future. It is crucial to develop and design sustainable nitrogen fixation techniques with minimal environmental impact as an alternative to the energy-cost intensive Haber-Bosch process. Heterojunction-based photocatalysis has recently emerged as a viable solution for the various environmental and energy issues, including nitrogen fixation. The primary advantages of heterojunction photocatalysts are spatially separated photogenerated charge carriers while retaining high oxidation and reduction potentials of the individual components, enabling visible light-harvesting. This review summarises the fundamental principles of photocatalytic heterostructures, the reaction mechanism of the nitrogen reduction reaction, ammonia detection methods, and the current progress of heterostructured photocatalysts for nitrogen fixation. Finally, future challenges and prospects are briefly discussed for the emerging field of heterostructured photocatalytic nitrogen fixation.

11.
Int J Biol Macromol ; 183: 880-889, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33961880

RESUMO

Fused deposition modelling (FDM) is a process of additive manufacturing allowing creating of highly precise complex three-dimensional objects for a large range of applications. The principle of FDM is an extrusion of the molten filament and gradual deposition of layers and their solidification. Potential applications in pharmaceutical and medical fields require the development of biodegradable and biocompatible thermoplastics for the processing of filaments. In this work, the potential of production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) filaments for FDM was investigated in respect to its thermal stability. Copolymer P(3HB-co-4HB) was biosynthesised by Cupriavidus malaysiensis. Rheological and mechanical properties of the copolymer were modified by the addition of plasticizers or blending with poly(lactic acid). Thermal stability of mixtures was studied employing thermogravimetric analysis and rheological analyses by monitoring the time-dependent changes in the complex viscosity of melt samples. The plasticization of P(3HB-co-4HB) slightly hindered its thermal degradation but the best stabilization effect was found in case of the copolymer blended with poly(lactic acid). Overall, rheological, thermal and mechanical properties demonstrated that the plasticized P(3HB-co-4HB) is a potential candidate of biodegradable polymer for FDM processes.


Assuntos
Cupriavidus/metabolismo , Hidroxibutiratos/química , Poliésteres/química , Estrutura Molecular , Peso Molecular , Plastificantes/química , Reologia , Temperatura
12.
ACS Omega ; 6(42): 28098-28118, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34723009

RESUMO

The development of flexible, lightweight, and thin high-performance electromagnetic interference shielding materials is urgently needed for the protection of humans, the environment, and electronic devices against electromagnetic radiation. To achieve this, the spinel ferrite nanoparticles CoFe2O4 (CZ1), Co0.67Zn0.33Fe2O4 (CZ2), and Co0.33Zn0.67Fe2O4 (CZ3) were prepared by the sonochemical synthesis method. Further, these prepared spinel ferrite nanoparticles and reduced graphene oxide (rGO) were embedded in a thermoplastic polyurethane (TPU) matrix. The maximum electromagnetic interference (EMI) total shielding effectiveness (SET) values in the frequency range 8.2-12.4 GHz of these nanocomposites with a thickness of only 0.8 mm were 48.3, 61.8, and 67.8 dB for CZ1-rGO-TPU, CZ2-rGO-TPU, and CZ3-rGO-TPU, respectively. The high-performance electromagnetic interference shielding characteristics of the CZ3-rGO-TPU nanocomposite stem from dipole and interfacial polarization, conduction loss, multiple scattering, eddy current effect, natural resonance, high attenuation constant, and impedance matching. The optimized CZ3-rGO-TPU nanocomposite can be a potential candidate as a lightweight, flexible, thin, and high-performance electromagnetic interference shielding material.

13.
Nanomaterials (Basel) ; 11(5)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923033

RESUMO

Superparamagnetic ZnFe2O4 spinel ferrite nanoparticles were prepared by the sonochemical synthesis method at different ultra-sonication times of 25 min (ZS25), 50 min (ZS50), and 100 min (ZS100). The structural properties of ZnFe2O4 spinel ferrite nanoparticles were controlled via sonochemical synthesis time. The average crystallite size increases from 3.0 nm to 4.0 nm with a rise of sonication time from 25 min to 100 min. The change of physical properties of ZnFe2O4 nanoparticles with the increase of sonication time was observed. The prepared ZnFe2O4 nanoparticles show superparamagnetic behavior. The prepared ZnFe2O4 nanoparticles (ZS25, ZS50, and ZS100) and reduced graphene oxide (RGO) were embedded in a polyurethane resin (PUR) matrix as a shield against electromagnetic pollution. The ultra-sonication method has been used for the preparation of nanocomposites. The total shielding effectiveness (SET) value for the prepared nanocomposites was studied at a thickness of 1 mm in the range of 8.2-12.4 GHz. The high attenuation constant (α) value of the prepared ZS100-RGO-PUR nanocomposite as compared with other samples recommended high absorption of electromagnetic waves. The existence of electric-magnetic nanofillers in the resin matrix delivered the inclusive acts of magnetic loss, dielectric loss, appropriate attenuation constant, and effective impedance matching. The synergistic effect of ZnFe2O4 and RGO in the PUR matrix led to high interfacial polarization and, consequently, significant absorption of the electromagnetic waves. The outcomes and methods also assure an inventive and competent approach to develop lightweight and flexible polyurethane resin matrix-based nanocomposites, consisting of superparamagnetic zinc ferrite nanoparticles and reduced graphene oxide as a shield against electromagnetic pollution.

14.
RSC Adv ; 10(49): 29202-29213, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521111

RESUMO

Biodegradable packaging materials represent one possible solution for how to reduce the negative environmental impact of plastics. The main idea of this work was to investigate the possibility of utilizing grape seed lignin for the modification of polyhydroxyalkanoates with the use of its antioxidant capacity in packaging films. For this purpose, polymeric films based on the blend of high crystalline poly(3-hydroxybutyrate) (PHB) and amorphous polyhydroxyalkanoate (PHA) were prepared. PHB/PHA films displayed Young modulus of 240 MPa, tensile strength at a maximum of 6.6 MPa and elongation at break of 95.2%. The physical properties of PHB/PHA films were modified by the addition of 1-10 wt% of grape seeds lignin (GS-L). GS-L lignin showed a high antioxidant capacity: 238 milligrams of Trolox equivalents were equal to one gram of grape seeds lignin. The incorporation of grape seeds lignin into PHB/PHA films positively influenced their gas barrier properties, antioxidant activity and biodegradability. The values of oxygen and carbon dioxide transition rate of PHB/PHA with 1 wt% of GS-L were 7.3 and 36.3 cm3 m-2 24 h 0.1 MPa, respectively. The inhibition percentage of the ABTS radical determined in PHB/PHA/GS-L was in the range of 29.2% to 100% depending on the lignin concentration. The biodegradability test carried out under controlled composting environment for 90 days showed that the PHB/PHA film with 50 w/w% of amorphous PHA reached the degradability degree of 68.8% being about 26.6% higher decomposition than in the case of neat high crystalline PHB film. The degradability degree of PHA films in compost within the tested period reflected the modification of the semi-crystalline character and varied with the incorporated lignin. From the toxicological point of view, the composts obtained after biodegradation of PHA films proved the non-toxicity of PHB/PHA/GS-L materials and its degradation products showed a positive effect on white mustard (Sinapis alba L.) seeds germination.

15.
Materials (Basel) ; 13(13)2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635613

RESUMO

Polyhydroxyalkanoates (PHAs) are hydrolyzable bio-polyesters. The possibility of utilizing lignocellulosic waste by-products and grape pomace as carbon sources for PHA biosynthesis was investigated. PHAs were biosynthesized by employing Cupriavidus necator grown on fructose (PHBV-1) or grape sugar extract (PHBV-2). Fifty grams of lyophilized grape sugar extract contained 19.2 g of glucose, 19.1 g of fructose, 2.7 g of pectin, 0.52 g of polyphenols, 0.51 g of flavonoids and 7.97 g of non-identified rest compounds. The grape sugar extract supported the higher production of biomass and modified the composition of PHBV-2. The biosynthesized PHAs served as matrices for the preparation of the scaffolds. The PHBV-2 scaffolds had about 44.2% lower crystallinity compared to the PHBV-1 scaffolds. The degree of crystallinity markedly influenced the mechanical behavior and enzymatic hydrolysis of the PHA scaffolds in the synthetic gastric juice and phosphate buffer saline solution with the lipase for 81 days. The higher proportion of amorphous moieties in PHBV-2 accelerated enzymatic hydrolysis. After 81-days of lasting enzymatic hydrolysis, the morphological changes of the PHBV-1 scaffolds were negligible compared to the visible destruction of the PHBV-2 scaffolds. These results indicated that the presence of pectin and phenolic moieties in PHBV may markedly change the semi-crystalline character of PHBV, as well as its mechanical properties and the course of abiotic or enzymatic hydrolysis.

16.
Ultrason Sonochem ; 61: 104839, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31683238

RESUMO

Herein, we report sonochemical synthesis of MnFe2O4 spinel ferrite nanoparticles using UZ SONOPULS HD 2070 Ultrasonic homogenizer (frequency: 20 kHz and power: 70 W). The sonication time and percentage amplitude of ultrasonic power input cause appreciable changes in the structural, cation distribution and physical properties of MnFe2O4 nanoparticles. The average crystallite size of synthesized MnFe2O4 nanoparticles was increased with increase of sonication time and percentage amplitude of ultrasonic power input. The occupational formula by X-ray photoelectron spectroscopy for prepared spinel ferrite nanoparticles was (Mn0.29Fe0.42)[Mn0.71Fe1.58]O4 and (Mn0.28Fe0.54) [Mn0.72Fe1.46]O4 at sonication time 20 min and 80 min, respectively. The value of the saturation magnetization was increased from 1.9 emu/g to 52.5 emu/g with increase of sonication time 20 min to 80 min at constant 50% amplitude of ultrasonic power input, whereas, it was increased from 30.2 emu/g to 59.4 emu/g with increase of the percentage amplitude of ultrasonic power input at constant sonication time 60 min. The highest value of dielectric constant (ε') was 499 at 1 kHz for nanoparticles at sonication time 20 min, whereas, ac conductivity was 368 × 10-9 S/cm at 1 kHz for spinel ferrite nanoparticles at sonication time 20 min. The demonstrated controllable physical characteristics over sonication time and percentage amplitude of ultrasonic power input are a key step to design spinel ferrite material of desired properties for specific application. The investigation of microwave operating frequency suggest that these prepared spinel ferrite nanoparticles are potential candidate for fabrication of devices at high frequency applications.

17.
Nanomaterials (Basel) ; 10(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321997

RESUMO

In this work, various tunable sized spinel ferrite MnFe2O4 nanoparticles (namely MF20, MF40, MF60 and MF80) with reduced graphene oxide (RGO) were embedded in a polypropylene (PP) matrix. The particle size and structural feature of magnetic filler MnFe2O4 nanoparticles were controlled by sonochemical synthesis time 20 min, 40 min, 60 min and 80 min. As a result, the electromagnetic interference shielding characteristics of developed nanocomposites MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP were also controlled by tuning of magnetic/dielectric loss. The maximum value of total shielding effectiveness (SET) was 71.3 dB for the MF80-RGO-PP nanocomposite sample with a thickness of 0.5 mm in the frequency range (8.2-12.4 GHz). This lightweight, flexible and thin nanocomposite sheet based on the appropriate size of MnFe2O4 nanoparticles with reduced graphene oxide demonstrates a high-performance advanced nanocomposite for cutting-edge electromagnetic interference shielding application.

18.
ACS Omega ; 4(26): 22069-22081, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31891087

RESUMO

In this work, nickel ferrite (NiFe2O4) nanoparticles were synthesized by dextrin from corn-mediated sol-gel combustion method and were annealed at 600, 800, and 1000 °C. The structural and physical characteristics of prepared nanoparticles were studied in detail. The average crystallite size was 20.6, 34.5, and 68.6 nm for NiFe2O4 nanoparticles annealed at 600 °C (NFD@600), 800 °C (NFD@800), and 1000 °C (NFD@1000), respectively. The electromagnetic interference shielding performance of prepared nanocomposites of NiFe2O4 nanoparticles (NFD@600 or NFD@800 or NFD@1000) in polypropylene (PP) matrix engineered with reduced graphene oxide (rGO) have been investigated; the results indicated that the prepared nanocomposites consisted of smaller-sized nickel ferrite nanoparticles exhibited excellent electromagnetic interference (EMI) shielding characteristics. The total EMI shielding effectiveness (SET) for the prepared nanocomposites have been noticed to be 45.56, 36.43, and 35.71 dB for NFD@600-rGO-PP, NFD@800-rGO-PP, and NFD@1000-rGO-PP nanocomposites, respectively, at the thickness of 2 mm in microwave X-band range (8.2-12.4 GHz). The evaluated values of specific EMI shielding effectiveness (SSE) were 38.81, 32.79, and 31.73 dB·cm3/g, and the absolute EMI shielding effectiveness (SSE/t) values were 388.1, 327.9, and 317.3 dB·cm2/g for NFD@600-rGO-PP, NFD@800-rGO-PP, and NFD@1000-rGO-PP, respectively. The prepared lightweight and flexible sheets can be considered useful nanocomposites against electromagnetic radiation pollution.

19.
Nanomaterials (Basel) ; 9(4)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995813

RESUMO

Herein, we presented electromagnetic interference shielding characteristics of NiFe2O4 nanoparticles-in-situ thermally-reduced graphene oxide (RGO)-polypropylene nanocomposites with the variation of reduced graphene oxide content. The structural, morphological, magnetic, and electromagnetic parameters and mechanical characteristics of fabricated nanocomposites were investigated and studied in detail. The controllable composition of NiFe2O4-RGO-Polypropylene nanocomposites exhibited electromagnetic interference (EMI) shielding effectiveness (SE) with a value of 29.4 dB at a thickness of 2 mm. The enhanced EMI shielding properties of nanocomposites with the increase of RGO content could be assigned to enhanced attenuation ability, high conductivity, dipole and interfacial polarization, eddy current loss, and natural resonance. The fabricated lightweight NiFe2O4-RGO-Polypropylene nanocomposites have potential as a high performance electromagnetic interference shielding nanocomposite.

20.
Ultrason Sonochem ; 40(Pt A): 773-783, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28946484

RESUMO

In this work, a facile and green method for gadolinium doped cobalt ferrite (CoFe2-xGdxO4; x=0.00, 0.05, 0.10, 0.15, 0.20) nanoparticles by using ultrasonic irradiation was reported. The impact of Gd3+ substitution on the structural, magnetic, dielectric and electrical properties of cobalt ferrite nanoparticles was evaluated. The sonochemically synthesized spinel ferrite nanoparticles were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM). X-ray diffraction (XRD) study confirmed the formation of single phase spinel ferrite of CoFe2-xGdxO4 nanoparticles. XRD results also revealed that ultrasonic irradiation seems to be favourable to achieve highly crystalline single crystal phase gadolinium doped cobalt ferrite nanoparticles without any post annealing process. Fourier Transform Infrared and Raman Spectra confirmed the formation of spinel ferrite crystal structure. X-ray photoelectron spectroscopy revealed the impact of Gd3+ substitution in CoFe2O4 nanoparticles on cation distribution at the tetrahedral and octahedral site in spinel ferrite crystal system. The electrical properties showed that the Gd3+ doped cobalt ferrite (CoFe2-xGdxO4; x=0.20) exhibit enhanced dielectric constant (277 at 100Hz) and ac conductivity (20.2×10-9S/cm at 100Hz). The modulus spectroscopy demonstrated the impact of Gd3+ substitution in cobalt ferrite nanoparticles on grain boundary relaxation time, capacitance and resistance. Magnetic property measurement revealed that the coercivity decreases with Gd3+ substitution from 234.32Oe (x=0.00) to 12.60Oe (x=0.05) and further increases from 12.60Oe (x=0.05) to 68.62Oe (x=0.20). Moreover, saturation magnetization decreases with Gd3+ substitution from 40.19emu/g (x=0.00) to 21.58emu/g (x=0.20). This work demonstrates that the grain size and cation distribution in Gd3+ doped cobalt ferrite nanoparticles synthesized by sonochemical method, is effective in controlling the structural, magnetic, and electrical properties, and can be find very promising applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA