Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Psychol ; 15: 1336363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716269

RESUMO

Social intuition is instrumental in bringing about successful human interactions, yet its behavioral and neural underpinnings are still poorly understood. We focus in this article on the automatic, involuntary, nature of social intuition, rather than on higher-level cognitive and explicit Theory-of-Mind processes (which contribute to rendering social intuition meaningful in real-life situations). We argue that social-affective implicit learning plays a crucial role in establishing automatic social intuition. These implicit learning processes involve associations between the perception of other's bodily articulations, concurrent events, and the consequences or outcomes in terms of subsequent actions, affective valences and visceral states. The traditional non-social implicit learning paradigms do not allow one to draw conclusions about the role of implicit learning processes in social intuition, as they lack these vital characteristics typically associated with human actions. We introduce a new implicit learning paradigm, which aims to fill these gaps. It targets agile, rapid, social-affective learning processes, involving cue contingencies with a relatively simple structure, unlike the very complex structures that underpin the traditional tasks. The paradigm features matching social and non-social versions, allowing direct comparison. Preliminary data suggest equal performance of TD (typically-developed) and ASC (autism spectrum conditions) groups on the non-social version, but impaired implicit learning in ASC on the social version. We hypothesize that this reflects an anomalous use of implicitly learned affective information in ASC when judging other people. We further argue that the mirror neuron mechanism (MNM), which is part of the Action Observation Network, forms an integral part of the neural substrate for social intuition. In particular as there are indications that the MNM supports action anticipation, and that implicitly learned information can trigger MNM activation, which both seem vital to a social intuition ability. The insights that can be derived from comparing the performances of TD and ASC individuals on (non)social implicit learning tasks, and the implications for the role of MNM activation, are discussed.

2.
Front Psychol ; 9: 1918, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374318

RESUMO

Changes in the intensity and type of facial expressions reflect alterations in the emotional state of the agent. Such "direct" access to the other's affective state might, top-down, influence the perception of the facial expressions that gave rise to the affective state inference. Previously, we described a perceptual bias occurring when the last, neutral, expression of offsets of facial expressions (joy-to-neutral and anger-to-neutral), was evaluated. Individuals with high-functioning autism (HFA) and matched typically developed (TD) individuals rated the neutral expression at the end of the joy-offset videos as slightly angry and the identical neutral expression at the end of the anger-offset videos as slightly happy ("overshoot" bias). That study suggested that the perceptual overshoot response bias in the TD group could be best explained by top-down "emotional anticipation," i.e., the involuntary/automatic anticipation of the agent's next emotional state of mind, generated by the immediately preceding perceptual history (low-level mind reading). The experimental manipulations further indicated that in the HFA group the "overshoot" was better explained by contrast effects between the first and last facial expressions, both presented for a relatively long period of 400 ms. However, in principle, there is another, more parsimonious, explanation, which is pattern extrapolation or representational momentum (RM): the extrapolation of a pattern present in the dynamic sequence. This hypothesis is tested in the current study, in which 18 individuals with HFA and a matched control group took part. In a base-line condition, joy-offset and anger-offset video-clips were presented. In the new experimental condition, the clips were modified so as to create an offset-onset-offset pattern within each sequence (joy-to-anger-to-neutral and anger-to-joy-to-neutral). The final neutral expressions had to be evaluated. The overshoot bias was confirmed in the base-line condition for both TD and HFA groups, while the experimental manipulation removed the bias in both groups. This outcome ruled out pattern extrapolation or RM as explanation for the perceptual "overshoot" bias in the HFA group and suggested a role for facial contrast effects in HFA. This is compatible with the view that ASD individuals tend to lack the spontaneous "tracking" of changes in the others' affective state and hence show no or reduced emotional anticipation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA