Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Nat Rev Genet ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565962

RESUMO

Pleiotropy (whereby one genetic polymorphism affects multiple traits) and epistasis (whereby non-linear interactions between genetic polymorphisms affect the same trait) are fundamental aspects of the genetic architecture of quantitative traits. Recent advances in the ability to characterize the effects of polymorphic variants on molecular and organismal phenotypes in human and model organism populations have revealed the prevalence of pleiotropy and unexpected shared molecular genetic bases among quantitative traits, including diseases. By contrast, epistasis is common between polymorphic loci associated with quantitative traits in model organisms, such that alleles at one locus have different effects in different genetic backgrounds, but is rarely observed for human quantitative traits and common diseases. Here, we review the concepts and recent inferences about pleiotropy and epistasis, and discuss factors that contribute to similarities and differences between the genetic architecture of quantitative traits in model organisms and humans.

2.
Trends Genet ; 39(8): 602-608, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36878820

RESUMO

Behaviors are components of fitness and contribute to adaptive evolution. Behaviors represent the interactions of an organism with its environment, yet innate behaviors display robustness in the face of environmental change, which we refer to as 'behavioral canalization'. We hypothesize that positive selection of hub genes of genetic networks stabilizes the genetic architecture for innate behaviors by reducing variation in the expression of interconnected network genes. Robustness of these stabilized networks would be protected from deleterious mutations by purifying selection or suppressing epistasis. We propose that, together with newly emerging favorable mutations, epistatically suppressed mutations can generate a reservoir of cryptic genetic variation that could give rise to decanalization when genetic backgrounds or environmental conditions change to allow behavioral adaptation.


Assuntos
Adaptação Fisiológica , Redes Reguladoras de Genes , Fenótipo , Mutação/genética , Redes Reguladoras de Genes/genética , Adaptação Fisiológica/genética , Epistasia Genética , Seleção Genética , Modelos Genéticos , Aptidão Genética , Variação Genética/genética
3.
PLoS Biol ; 20(7): e3001692, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35852997

RESUMO

Gregor Mendel's discovery of the laws of segregation and independent assortment and his inference of the existence of non-mendelian interactions between loci remain at the heart of today's explorations of the genetic architecture of quantitative traits.


Assuntos
Genética , Fenótipo
4.
Genome Res ; 31(10): 1927-1937, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34035044

RESUMO

Whereas the neurological effects of cocaine have been well documented, effects of acute cocaine consumption on genome-wide gene expression across the brain remain largely unexplored. This question cannot be readily addressed in humans but can be approached using the Drosophila melanogaster model, where gene expression in the entire brain can be surveyed at once. Flies exposed to cocaine show impaired locomotor activity, including climbing behavior and startle response (a measure of sensorimotor integration), and increased incidence of seizures and compulsive grooming. To identify specific cell populations that respond to acute cocaine exposure, we analyzed single-cell transcriptional responses in duplicate samples of flies that consumed fixed amounts of sucrose or sucrose supplemented with cocaine, in both sexes. Unsupervised clustering of the transcriptional profiles of a total of 86,224 cells yielded 36 distinct clusters. Annotation of clusters based on gene markers revealed that all major cell types (neuronal and glial) as well as neurotransmitter types from most brain regions were represented. The brain transcriptional responses to cocaine showed profound sexual dimorphism and were considerably more pronounced in males than females. Differential expression analysis within individual clusters indicated cluster-specific responses to cocaine. Clusters corresponding to Kenyon cells of the mushroom bodies and glia showed especially large transcriptional responses following cocaine exposure. Cluster specific coexpression networks and global interaction networks revealed a diverse array of cellular processes affected by acute cocaine exposure. These results provide an atlas of sexually dimorphic cocaine-modulated gene expression in a model brain.


Assuntos
Cocaína , Proteínas de Drosophila , Animais , Encéfalo/metabolismo , Cocaína/metabolismo , Cocaína/farmacologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Masculino
5.
Proc Biol Sci ; 291(2027): 20240672, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39045689

RESUMO

Speciation is a fundamental evolutionary process but the genetic changes accompanying speciation are difficult to determine since true species do not produce viable and fertile offspring. Partially reproductively isolated incipient species are useful for assessing genetic changes that occur prior to speciation. Drosophila melanogaster from Zimbabwe, Africa are partially sexually isolated from other D. melanogaster populations whose males have poor mating success with Zimbabwe females. We used the North American D. melanogaster Genetic Reference Panel (DGRP) to show that there is significant genetic variation in mating success of DGRP males with Zimbabwe females, to map genetic variants and genes associated with variation in mating success and to determine whether mating success to Zimbabwe females is associated with other quantitative traits previously measured in the DGRP. Incipient sexual isolation is highly polygenic and associated with the common African inversion In(3R)K and the amount of the sex pheromone 5,9-heptacosadiene in DGRP females. We functionally validated the effect of eight candidate genes using RNA interference to provide testable hypotheses for future studies investigating the molecular genetic basis of incipient sexual isolation in D. melanogaster.


Assuntos
Drosophila melanogaster , Isolamento Reprodutivo , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Masculino , Feminino , Zimbábue , Especiação Genética , Variação Genética , Comportamento Sexual Animal , Atrativos Sexuais
6.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074789

RESUMO

We used Drosophila melanogaster to map the genetic basis of naturally occurring variation in voluntary consumption of cocaine and methamphetamine. We derived an outbred advanced intercross population (AIP) from 37 sequenced inbred wild-derived lines of the Drosophila melanogaster Genetic Reference Panel (DGRP), which are maximally genetically divergent, have minimal residual heterozygosity, are not segregating for common inversions, and are not infected with Wolbachia pipientis We assessed consumption of sucrose, methamphetamine-supplemented sucrose, and cocaine-supplemented sucrose and found considerable phenotypic variation for consumption of both drugs, in both sexes. We performed whole-genome sequencing and extreme quantitative trait locus (QTL) mapping on the top 10% of consumers for each replicate, sex, and condition and an equal number of randomly selected flies. We evaluated changes in allele frequencies among high consumers and control flies and identified 3,033 variants significantly (P < 1.9 × 10-8) associated with increased consumption, located in or near 1,962 genes. Many of these genes are associated with nervous system development and function, and 77 belong to a known gene-gene interaction subnetwork. We assessed the effects of RNA interference (RNAi) on drug consumption for 22 candidate genes; 17 had a significant effect in at least one sex. We constructed allele-specific AIPs that were homozygous for alternative candidate alleles for 10 single-nucleotide polymorphisms (SNPs) and measured average consumption for each population; 9 SNPs had significant effects in at least one sex. The genetic basis of voluntary drug consumption in Drosophila is polygenic and implicates genes with human orthologs and associated variants with sex- and drug-specific effects.


Assuntos
Cocaína/farmacologia , Proteínas de Drosophila/genética , Epistasia Genética , Metanfetamina/farmacologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Caracteres Sexuais , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino
7.
Genome Res ; 30(3): 392-405, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31694867

RESUMO

How effects of DNA sequence variants are transmitted through intermediate endophenotypes to modulate organismal traits remains a central question in quantitative genetics. This problem can be addressed through a systems approach in a population in which genetic polymorphisms, gene expression traits, metabolites, and complex phenotypes can be evaluated on the same genotypes. Here, we focused on the metabolome, which represents the most proximal link between genetic variation and organismal phenotype, and quantified metabolite levels in 40 lines of the Drosophila melanogaster Genetic Reference Panel. We identified sex-specific modules of genetically correlated metabolites and constructed networks that integrate DNA sequence variation and variation in gene expression with variation in metabolites and organismal traits, including starvation stress resistance and male aggression. Finally, we asked to what extent SNPs and metabolites can predict trait phenotypes and generated trait- and sex-specific prediction models that provide novel insights about the metabolomic underpinnings of complex phenotypes.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metaboloma/genética , Animais , Feminino , Estudos de Associação Genética , Variação Genética , Masculino , Fenótipo , Locos de Características Quantitativas
8.
Genome Res ; 30(3): 485-496, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32144088

RESUMO

A major challenge in modern biology is to understand how naturally occurring variation in DNA sequences affects complex organismal traits through networks of intermediate molecular phenotypes. This question is best addressed in a genetic mapping population in which all molecular polymorphisms are known and for which molecular endophenotypes and complex traits are assessed on the same genotypes. Here, we performed deep RNA sequencing of 200 Drosophila Genetic Reference Panel inbred lines with complete genome sequences and for which phenotypes of many quantitative traits have been evaluated. We mapped expression quantitative trait loci for annotated genes, novel transcribed regions, transposable elements, and microbial species. We identified host variants that affect expression of transposable elements, independent of their copy number, as well as microbiome composition. We constructed sex-specific expression quantitative trait locus regulatory networks. These networks are enriched for novel transcribed regions and target genes in heterochromatin and euchromatic regions of reduced recombination, as well as genes regulating transposable element expression. This study provides new insights regarding the role of natural genetic variation in regulating gene expression and generates testable hypotheses for future functional analyses.


Assuntos
Drosophila melanogaster/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Animais , Elementos de DNA Transponíveis , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Feminino , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Microbiota/genética , Locos de Características Quantitativas , Análise de Sequência de RNA
9.
Proc Biol Sci ; 290(1996): 20230375, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37040806

RESUMO

Fertility is a major component of fitness but its genetic architecture remains poorly understood. Using a full diallel cross of 50 Drosophila Genetic Reference Panel inbred lines with whole genome sequences, we found substantial genetic variation in fertility largely attributable to females. We mapped genes associated with variation in female fertility by genome-wide association analysis of common variants in the fly genome. Validation of candidate genes by RNAi knockdown confirmed the role of the dopamine 2-like receptor (Dop2R) in promoting egg laying. We replicated the Dop2R effect in an independently collected productivity dataset and showed that the effect of the Dop2R variant was mediated in part by regulatory gene expression variation. This study demonstrates the strong potential of genome-wide association analysis in this diverse panel of inbred strains and subsequent functional analyses for understanding the genetic architecture of fitness traits.


Assuntos
Drosophila melanogaster , Estudo de Associação Genômica Ampla , Animais , Feminino , Drosophila melanogaster/fisiologia , Drosophila/genética , Fertilidade , Variação Genética
10.
PLoS Biol ; 18(3): e3000645, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32134916

RESUMO

Understanding the genetic basis of variation in life span is a major challenge that is difficult to address in human populations. Evolutionary theory predicts that alleles affecting natural variation in life span will have properties that enable them to persist in populations at intermediate frequencies, such as late-life-specific deleterious effects, antagonistic pleiotropic effects on early and late-age fitness components, and/or sex- and environment-specific or antagonistic effects. Here, we quantified variation in life span in males and females reared in 3 thermal environments for the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and an advanced intercross outbred population derived from a subset of DGRP lines. Quantitative genetic analyses of life span and the micro-environmental variance of life span in the DGRP revealed significant genetic variance for both traits within each sex and environment, as well as significant genotype-by-sex interaction (GSI) and genotype-by-environment interaction (GEI). Genome-wide association (GWA) mapping in both populations implicates over 2,000 candidate genes with sex- and environment-specific or antagonistic pleiotropic allelic effects. Over 1,000 of these genes are associated with variation in life span in other D. melanogaster populations. We functionally assessed the effects of 15 candidate genes using RNA interference (RNAi): all affected life span and/or micro-environmental variance of life span in at least one sex and environment and exhibited sex-and environment-specific effects. Our results implicate novel candidate genes affecting life span and suggest that variation for life span may be maintained by variable allelic effects in heterogeneous environments.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Longevidade/genética , Animais , Drosophila melanogaster/genética , Feminino , Interação Gene-Ambiente , Variação Genética , Estudo de Associação Genômica Ampla , Masculino , Interferência de RNA , Temperatura
11.
BMC Genomics ; 23(1): 347, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524193

RESUMO

BACKGROUND: Prenatal exposure to ethanol can cause fetal alcohol spectrum disorder (FASD), a prevalent, preventable pediatric disorder. Identifying genetic risk alleles for FASD is challenging since time, dose, and frequency of exposure are often unknown, and manifestations of FASD are diverse and evident long after exposure. Drosophila melanogaster is an excellent model to study the genetic basis of the effects of developmental alcohol exposure since many individuals of the same genotype can be reared under controlled environmental conditions. RESULTS: We used 96 sequenced, wild-derived inbred lines from the Drosophila melanogaster Genetic Reference Panel (DGRP) to profile genome-wide transcript abundances in young adult flies that developed on ethanol-supplemented medium or standard culture medium. We found substantial genetic variation in gene expression in response to ethanol with extensive sexual dimorphism. We constructed sex-specific genetic networks associated with alcohol-dependent modulation of gene expression that include protein-coding genes, Novel Transcribed Regions (NTRs, postulated to encode long non-coding RNAs) and female-specific coordinated regulation of snoRNAs that regulate pseudouridylation of ribosomal RNA. We reared DGRP lines which showed extreme upregulation or downregulation of snoRNA expression during developmental alcohol exposure on standard or ethanol supplemented medium and demonstrated that developmental exposure to ethanol has genotype-specific effects on adult locomotor activity and sleep. CONCLUSIONS: There is significant and sex-specific natural genetic variation in the transcriptional response to developmental exposure to ethanol in Drosophila that comprises networks of genes affecting nervous system development and ethanol metabolism as well as networks of regulatory non-coding RNAs.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Etanol , Transcriptoma , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Etanol/toxicidade , Feminino , Transtornos do Espectro Alcoólico Fetal/genética , Masculino
12.
BMC Genomics ; 23(1): 781, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36451091

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are a diverse class of RNAs that are critical for gene regulation, DNA repair, and splicing, and have been implicated in development, stress response, and cancer. However, the functions of many lncRNAs remain unknown. In Drosophila melanogaster, U snoRNA host gene 4 (Uhg4) encodes an antisense long noncoding RNA that is host to seven small nucleolar RNAs (snoRNAs). Uhg4 is expressed ubiquitously during development and in all adult tissues, with maximal expression in ovaries; however, it has no annotated function(s). RESULTS: We used CRISPR-Cas9 germline gene editing to generate multiple deletions spanning the promoter region and first exon of Uhg4. Females showed arrested egg development and both males and females were sterile. In addition, Uhg4 deletion mutants showed delayed development and decreased viability, and changes in sleep and responses to stress. Whole-genome RNA sequencing of Uhg4 deletion flies and their controls identified co-regulated genes and genetic interaction networks associated with Uhg4. Gene ontology analyses highlighted a broad spectrum of biological processes, including regulation of transcription and translation, morphogenesis, and stress response. CONCLUSION: Uhg4 is a lncRNA essential for reproduction with pleiotropic effects on multiple fitness traits.


Assuntos
RNA Longo não Codificante , Feminino , Masculino , Animais , RNA Longo não Codificante/genética , Drosophila melanogaster/genética , RNA Nucleolar Pequeno , Splicing de RNA , Redes Reguladoras de Genes
13.
Mol Biol Evol ; 38(5): 2030-2044, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33560417

RESUMO

Large multigene families, such as the insect odorant-binding proteins (OBPs), are thought to arise through functional diversification after repeated gene duplications. Whereas many OBPs function in chemoreception, members of this family are also expressed in tissues outside chemosensory organs. Paralogs of the Obp50 gene cluster are expressed in metabolic and male reproductive tissues, but their functions and interrelationships remain unknown. Here, we report the genetic dissection of four members of the Obp50 cluster, which are in close physical proximity without intervening genes. We used CRISPR technology to excise the entire cluster while introducing a PhiC31 reintegration site to reinsert constructs in which different combinations of the constituent Obp genes were either intact or rendered inactive. We performed whole transcriptome sequencing and assessed sexually dimorphic changes in transcript abundances (transcriptional niches) associated with each gene-edited genotype. Using this approach, we were able to estimate redundancy, additivity, diversification, and epistasis among Obp50 paralogs. We analyzed the effects of gene editing of this cluster on organismal phenotypes and found a significant skewing of sex ratios attributable to Obp50a, and sex-specific effects on starvation stress resistance attributable to Obp50d. Thus, there is functional diversification within the Obp50 cluster with Obp50a contributing to development and Obp50d to stress resistance. The deletion-reinsertion approach we applied to the Obp50 cluster provides a general paradigm for the genetic dissection of paralogs of multigene families.


Assuntos
Drosophila melanogaster/genética , Epistasia Genética , Evolução Molecular , Família Multigênica , Receptores Odorantes/genética , Animais , Drosophila melanogaster/metabolismo , Corpo Adiposo/metabolismo , Feminino , Genitália Masculina/metabolismo , Masculino , Fenótipo , Pupa/metabolismo , Receptores Odorantes/metabolismo
14.
PLoS Genet ; 15(5): e1007834, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31107875

RESUMO

Illicit use of psychostimulants, such as cocaine and methamphetamine, constitutes a significant public health problem. Whereas neural mechanisms that mediate the effects of these drugs are well-characterized, genetic factors that account for individual variation in susceptibility to substance abuse and addiction remain largely unknown. Drosophila melanogaster can serve as a translational model for studies on substance abuse, since flies have a dopamine transporter that can bind cocaine and methamphetamine, and exposure to these compounds elicits effects similar to those observed in people, suggesting conserved evolutionary mechanisms underlying drug responses. Here, we used the D. melanogaster Genetic Reference Panel to investigate the genetic basis for variation in psychostimulant drug consumption, to determine whether similar or distinct genetic networks underlie variation in consumption of cocaine and methamphetamine, and to assess the extent of sexual dimorphism and effect of genetic context on variation in voluntary drug consumption. Quantification of natural genetic variation in voluntary consumption, preference, and change in consumption and preference over time for cocaine and methamphetamine uncovered significant genetic variation for all traits, including sex-, exposure- and drug-specific genetic variation. Genome wide association analyses identified both shared and drug-specific candidate genes, which could be integrated in genetic interaction networks. We assessed the effects of ubiquitous RNA interference (RNAi) on consumption behaviors for 34 candidate genes: all affected at least one behavior. Finally, we utilized RNAi knockdown in the nervous system to implicate dopaminergic neurons and the mushroom bodies as part of the neural circuitry underlying experience-dependent development of drug preference.


Assuntos
Estimulantes do Sistema Nervoso Central/metabolismo , Cocaína/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genoma de Inseto , Metanfetamina/metabolismo , Transtornos Relacionados ao Uso de Substâncias/genética , Animais , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Comportamento Alimentar , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Masculino , Corpos Pedunculados/metabolismo , Corpos Pedunculados/fisiopatologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Caracteres Sexuais , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia
15.
Annu Rev Genet ; 46: 145-64, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22934647

RESUMO

Aggression mediates competition for food, mating partners, and habitats and, among social animals, establishes stable dominance hierarchies. In humans, abnormal aggression is a hallmark of neuropsychiatric disorders and can be elicited by environmental factors acting on an underlying genetic susceptibility. Identifying the genetic architecture that predisposes to aggressive behavior in people is challenging because of difficulties in quantifying the phenotype, genetic heterogeneity, and uncontrolled environmental conditions. Studies on mice have identified single-gene mutations that result in hyperaggression, contingent on genetic background. These studies can be complemented by systems genetics approaches in Drosophila melanogaster, in which mutational analyses together with genome-wide transcript analyses, artificial selection studies, and genome-wide analysis of epistasis have revealed that a large segment of the genome contributes to the manifestation of aggressive behavior with widespread epistatic interactions. Comparative genomic analyses based on the principle of evolutionary conservation are needed to enable a complete dissection of the neurogenetic underpinnings of this universal fitness trait.


Assuntos
Agressão/fisiologia , Epistasia Genética , Genes de Insetos , Genoma Humano , Alelos , Animais , Drosophila/genética , Drosophila/fisiologia , Interação Gene-Ambiente , Genética Populacional/métodos , Humanos , Camundongos , Mutação , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Fenótipo , Locos de Características Quantitativas , Seleção Genética
16.
Nat Rev Genet ; 15(1): 22-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24296533

RESUMO

The role of epistasis in the genetic architecture of quantitative traits is controversial, despite the biological plausibility that nonlinear molecular interactions underpin the genotype-phenotype map. This controversy arises because most genetic variation for quantitative traits is additive. However, additive variance is consistent with pervasive epistasis. In this Review, I discuss experimental designs to detect the contribution of epistasis to quantitative trait phenotypes in model organisms. These studies indicate that epistasis is common, and that additivity can be an emergent property of underlying genetic interaction networks. Epistasis causes hidden quantitative genetic variation in natural populations and could be responsible for the small additive effects, missing heritability and the lack of replication that are typically observed for human complex traits.


Assuntos
Epistasia Genética/genética , Variação Genética , Modelos Genéticos , Fenótipo , Característica Quantitativa Herdável , Animais , Mapeamento Cromossômico/métodos , Genótipo , Humanos , Mutação/genética
17.
PLoS Genet ; 13(7): e1006907, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28732062

RESUMO

The genetic factors that give rise to variation in susceptibility to environmental toxins remain largely unexplored. Studies on genetic variation in susceptibility to environmental toxins are challenging in human populations, due to the variety of clinical symptoms and difficulty in determining which symptoms causally result from toxic exposure; uncontrolled environments, often with exposure to multiple toxicants; and difficulty in relating phenotypic effect size to toxic dose, especially when symptoms become manifest with a substantial time lag. Drosophila melanogaster is a powerful model that enables genome-wide studies for the identification of allelic variants that contribute to variation in susceptibility to environmental toxins, since the genetic background, environmental rearing conditions and toxic exposure can be precisely controlled. Here, we used extreme QTL mapping in an outbred population derived from the D. melanogaster Genetic Reference Panel to identify alleles associated with resistance to lead and/or cadmium, two ubiquitous environmental toxins that present serious health risks. We identified single nucleotide polymorphisms (SNPs) associated with variation in resistance to both heavy metals as well as SNPs associated with resistance specific to each of them. The effects of these SNPs were largely sex-specific. We applied mutational and RNAi analyses to 33 candidate genes and functionally validated 28 of them. We constructed networks of candidate genes as blueprints for orthologous networks of human genes. The latter not only provided functional contexts for known human targets of heavy metal toxicity, but also implicated novel candidate susceptibility genes. These studies validate Drosophila as a translational toxicogenomics gene discovery system.


Assuntos
Drosophila melanogaster/genética , Resistência a Medicamentos/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Animais , Drosophila melanogaster/efeitos dos fármacos , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Metais Pesados/toxicidade , Mutação , Polimorfismo de Nucleotídeo Único/genética , Caracteres Sexuais , Toxicogenética
18.
Behav Genet ; 49(1): 60-82, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30341464

RESUMO

Circadian rhythms influence physiological processes from sleep-wake cycles to body temperature and are controlled by highly conserved cycling molecules. Although the mechanistic basis of the circadian clock has been known for decades, the extent to which circadian rhythms vary in nature and the underlying genetic basis for that variation is not well understood. We measured circadian period (Æ®) and rhythmicity index in the Drosophila Genetic Reference Panel (DGRP) and observed extensive genetic variation in both. Seven DGRP lines had sexually dimorphic arrhythmicity and one line had an exceptionally long Æ®. Genome-wide analyses identified 584 polymorphisms in 268 genes. We observed differences among transcripts for nine genes predicted to interact among themselves and canonical clock genes in the long period line and a control. Mutations/RNAi knockdown targeting these genes also affected circadian behavior. Our observations reveal that complex genetic interactions influence high levels of variation in circadian phenotypes.


Assuntos
Ritmo Circadiano/genética , Drosophila melanogaster/genética , Animais , Mapeamento Cromossômico/métodos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Epistasia Genética/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Mutação/genética , Fenótipo , Caracteres Sexuais
19.
PLoS Genet ; 12(11): e1006421, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27812106

RESUMO

Classical quantitative genetic analyses estimate additive and non-additive genetic and environmental components of variance from phenotypes of related individuals without knowing the identities of quantitative trait loci (QTLs). Many studies have found a large proportion of quantitative trait variation can be attributed to the additive genetic variance (VA), providing the basis for claims that non-additive gene actions are unimportant. In this study, we show that arbitrarily defined parameterizations of genetic effects seemingly consistent with non-additive gene actions can also capture the majority of genetic variation. This reveals a logical flaw in using the relative magnitudes of variance components to indicate the relative importance of additive and non-additive gene actions. We discuss the implications and propose that variance component analyses should not be used to infer the genetic architecture of quantitative traits.


Assuntos
Análise de Variância , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Mapeamento Cromossômico , Variação Genética , Fenótipo , Polimorfismo Genético
20.
PLoS Genet ; 12(4): e1005951, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27035832

RESUMO

Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.


Assuntos
Drosophila melanogaster/genética , Recombinação Genética , Animais , Drosophila melanogaster/microbiologia , Feminino , Estudo de Associação Genômica Ampla , Masculino , Wolbachia/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA