Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(4): 2438-2444, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573055

RESUMO

Phase-shifting interferometry is one of the optical measurement techniques that improves accuracy and resolution by incorporating a controlled phase shift into conventional optical interferometry. In this study, a four-step phase-shifting interferometer is developed to measure the spatiotemporal distribution of acoustic density oscillations of the gas next to a rigid plate. The experimental apparatus consists of a polarizing Mach-Zehnder interferometer with a polarization camera capable of capturing four polarization directions in one shot image and it is used to measure the magnitude and the phase of density fluctuations through a duct of rectangular cross section connected to a loudspeaker. The results are compared with the well-established thermoacoustic theory describing the thermal coupling between acoustic oscillations and rigid boundaries, and the results show a very good agreement for various ratios of the (frequency-dependent) thermal boundary layer thickness to the plate spacing. This measurement technique could be advantageously employed to analyze more complex heat transfer processes involving the coupling of acoustic oscillations with rigid boundaries.

2.
Nat Commun ; 14(1): 4028, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419913

RESUMO

The absorption of airborne sound is still a subject of active research, and even more since the emergence of acoustic metamaterials. Although being subwavelength, the screen barriers developed so far cannot absorb more than 50% of an incident wave at very low frequencies (<100 Hz). Here, we explore the design of a subwavelength and broadband absorbing screen based on thermoacoustic energy conversion. The system consists of a porous layer kept at room temperature on one side while the other side is cooled down to a very low temperature using liquid nitrogen. At the absorbing screen, the sound wave experiences both a pressure jump caused by viscous drag, and a velocity jump caused by thermoacoustic energy conversion breaking reciprocity and allowing a one-sided absorption up to 95 % even in the infrasound regime. By overcoming the ordinary low frequency absorption limit, thermoacoustic effects open the door to the design of innovative devices.


Assuntos
Acústica , Som , Temperatura , Porosidade , Temperatura Baixa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA