RESUMO
Brominated flame retardant chemicals, such as 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTBB) (CAS #: 183658-27-7) and bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) (CAS #: 26040-51-7), have been detected in avian tissues and eggs from remote regions. Exposure to EHTBB and TBPH has been shown to cause oxidative stress and altered thyroid function in rodents and fish, yet no controlled studies have examined potential adverse effects of exposure in birds. Because flame retardants have been detected in wild raptors, we used American kestrels (Falco sparverius) as a model raptor to determine whether in ovo exposure to EHTBB or TBPH affected growth, hatching success, oxidative stress, or thyroid function. We exposed kestrel embryos to nominal concentrations (10, 50, or 100 ng g-1 egg weight) of EHTBB and TBPH via egg-injection on embryonic day 5. Embryonic exposure (~23 d) to EHTBB increased thyroid gland mass, reduced glandular colloid and total thyroxine (T4) in hatchling males and females, whereas deiodinase enzyme activity increased in males but decreased in females. Hatchlings exposed to TBPH in ovo exhibited reduced colloid and increased oxidative stress. Although exposure to EHTBB and TBPH caused several physiological effects (e.g., heart and brain mass), only exposure to 50 ng g-1 EHTBB appeared to reduce hatching success. Our results suggest these flame retardants may be hazardous for predatory birds. Future research should evaluate long-term survival and fitness consequences in birds exposed to these chemicals.
Assuntos
Falconiformes , Retardadores de Chama , Animais , Feminino , Retardadores de Chama/toxicidade , Masculino , Estresse Oxidativo , Glândula Tireoide , Tiroxina/toxicidadeRESUMO
We investigated the effects of the androgenic growth promoter 17ß-trenbolone (17ßTB) on adult Japanese quail (Coturnix japonica) exposed across three generations. The F0 generation was exposed after sexual maturity to 0, 1, 5, 10, 20, and 40 ppm through feed. The F1 generation was exposed in ovo by maternal transfer and through feed at the same doses as their parents. The F2 generation was exposed in ovo only. Levels of plasma sex steroids, gonadal Cytochrome P450 aromatase (CYP19A1) mRNA and select brain neuroendocrine peptide mRNAs were measured. In males, testosterone levels did not differ in any generation from those in controls. Estradiol was significantly elevated in 17ßTB treated F0 and F1 males. In F0 and F1 females, testosterone was suppressed by 17ßTB, whereas estradiol was significantly higher at 40 ppm in F0 and at 10 ppm in F1 females. CYP19A1 expression in F1 males and females increased suggesting a compensatory response to the androgenic effects of 17ßTB. Few significant effects were observed in the F2 birds indicating that in ovo exposure had limited effects on the monitored endpoints. Overall, our results confirmed endocrine disrupting effects of dietary 17ßTB in Japanese quail but the response was dependent on sex, developmental stage at initiation of exposure, and dose.