Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Toxicol Appl Pharmacol ; 438: 115830, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933053

RESUMO

Dibenzo[def,p]chrysene (DBC) is an environmental polycyclic aromatic hydrocarbon (PAH) that causes tumors in mice and has been classified as a probable human carcinogen by the International Agency for Research on Cancer. Animal toxicity studies often utilize higher doses than are found in relevant human exposures. Additionally, like many PAHs, DBC requires metabolic bioactivation to form the ultimate toxicant, and species differences in DBC and DBC metabolite metabolism have been observed. To understand the implications of dose and species differences, a physiologically based pharmacokinetic model (PBPK) for DBC and major metabolites was developed in mice and humans. Metabolism parameters used in the model were obtained from experimental in vitro metabolism assays using mice and human hepatic microsomes. PBPK model simulations were evaluated against mice dosed with 15 mg/kg DBC by oral gavage and human volunteers orally microdosed with 29 ng of DBC. DBC and its primary metabolite DBC-11,12-diol were measured in blood of mice and humans, while in urine, the majority of DBC metabolites were obeserved as conjugated DBC-11,12-diol, conjugated DBC tetrols, and unconjugated DBC tetrols. The PBPK model was able to predict the time course concentrations of DBC, DBC-11,12-diol, and other DBC metabolites in blood and urine of human volunteers and mice with reasonable accuracy. Agreement between model simulations and measured pharmacokinetic data in mice and human studies demonstrate the success and versatility of our model for interspecies extrapolation and applicability for different doses. Furthermore, our simulations show that internal dose metrics used for risk assessment do not necessarily scale allometrically, and that PBPK modeling provides a reliable approach to appropriately account for interspecies differences in metabolism and physiology.


Assuntos
Crisenos/administração & dosagem , Crisenos/farmacocinética , Cistina/análogos & derivados , Animais , Carcinógenos/administração & dosagem , Carcinógenos/farmacocinética , Cistina/administração & dosagem , Cistina/farmacocinética , Feminino , Humanos , Masculino , Camundongos , Modelos Biológicos , Neoplasias/induzido quimicamente
2.
Mol Carcinog ; 56(1): 163-171, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26990437

RESUMO

The cytochrome P450 (CYP) 1 family is active toward numerous environmental pollutants, including polycyclic aromatic hydrocarbons (PAHs). Utilizing a mouse model, null for Cyp1b1 and expressing human CYP1B1, we tested the hypothesis that hCYP1B1 is important for dibenzo[def,p]chrysene (DBC) transplacental carcinogenesis. Wild-type mCyp1b1, transgenic hCYP1B1 (mCyp1b1 null background), and mCyp1b1 null mice were assessed. Each litter had an equal number of siblings with Ahrb-1/d and Ahrd/d alleles. Pregnant mice were dosed (gavage) on gestation day 17 with 6.5 or 12 mg/kg of DBC or corn oil. At 10 months of age, mortality, general health, lymphoid disease and lung tumor incidence, and multiplicity were assessed. hCYP1B1 genotype did not impact lung tumor multiplicity, but tended to enhance incidence compared to Cyp1b1 wild-type mice (P = 0.07). As with Cyp1b1 in wild-type mice, constitutive hCYP1B1 protein is non-detectable in liver but was induced with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Wild-type mice were 59% more likely to succumb to T-cell Acute Lymphoblastic Leukemia (T-ALL). Unlike an earlier examination of the Ahr genotype in this model (Yu et al., Cancer Res, 2006;66:755-762), but in agreement with a more recent study (Shorey et al., Toxicol Appl Pharmacol, 2013;270:60-69), this genotype was not associated with lung tumor incidence, multiplicity, or mortality. Sex was not significant with respect to lung tumor incidence or mortality but males exhibited significantly greater multiplicity. Lung tumor incidence was greater in mCyp1b1 nulls compared to wild-type mice. To our knowledge, this is the first application of a humanized mouse model in transplacental carcinogenesis. © 2016 Wiley Periodicals, Inc.


Assuntos
Carcinogênese/genética , Citocromo P-450 CYP1B1/genética , Neoplasias Pulmonares/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Complicações Neoplásicas na Gravidez/genética , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Carcinógenos , Crisenos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Placenta/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/induzido quimicamente , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Gravidez , Complicações Neoplásicas na Gravidez/induzido quimicamente , Complicações Neoplásicas na Gravidez/patologia
3.
Chem Res Toxicol ; 29(10): 1641-1650, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27494294

RESUMO

Metabolism is a key health risk factor following exposures to pro-carcinogenic polycyclic aromatic hydrocarbons (PAHs) such as dibenzo[def,p]chrysene (DBC), an IARC classified 2A probable human carcinogen. Human exposure to PAHs occurs primarily from the diet in nonsmokers. However, little data is available on the metabolism and pharmacokinetics in humans of high molecular weight PAHs (≥4 aromatic rings), including DBC. We previously determined the pharmacokinetics of DBC in human volunteers orally administered a microdose (29 ng; 5 nCi) of [14C]-DBC by accelerator mass spectrometry (AMS) analysis of total [14C] in plasma and urine. In the current study, we utilized a novel "moving wire" interface between ultraperformance liquid chromatography (UPLC) and AMS to detect and quantify parent DBC and its major metabolites. The major [14C] product identified in plasma was unmetabolized [14C]-DBC itself (Cmax = 18.5 ±15.9 fg/mL, Tmax= 2.1 ± 1.0 h), whereas the major metabolite was identified as [14C]-(+/-)-DBC-11,12-diol (Cmax= 2.5 ±1.3 fg/mL, Tmax= 1.8 h). Several minor species of [14C]-DBC metabolites were also detected for which no reference standards were available. Free and conjugated metabolites were detected in urine with [14C]-(+/-)-DBC-11,12,13,14-tetraol isomers identified as the major metabolites, 56.3% of which were conjugated (Cmax= 35.8 ± 23.0 pg/pool, Tmax = 6-12 h pool). [14C]-DBC-11,12-diol, of which 97.5% was conjugated, was also identified in urine (Cmax = 29.4 ± 11.6 pg/pool, Tmax = 6-12 h pool). Parent [14C]-DBC was not detected in urine. This is the first data set to assess metabolite profiles and associated pharmacokinetics of a carcinogenic PAH in human volunteers at an environmentally relevant dose, providing the data necessary for translation of high dose animal models to humans for translation of environmental health risk assessment.


Assuntos
Benzopirenos/metabolismo , Benzopirenos/farmacocinética , Adulto , Idoso , Benzopirenos/análise , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Feminino , Voluntários Saudáveis , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Estrutura Molecular , Adulto Jovem
4.
Toxicol Appl Pharmacol ; 270(1): 60-9, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23566957

RESUMO

Cruciferous vegetable components have been documented to exhibit anticancer properties. Targets of action span multiple mechanisms deregulated during cancer progression, ranging from altered carcinogen metabolism to the restoration of epigenetic machinery. Furthermore, the developing fetus is highly susceptible to changes in nutritional status and to environmental toxicants. Thus, we have exploited a mouse model of transplacental carcinogenesis to assess the impact of maternal dietary supplementation on cancer risk in offspring. In this study, transplacental and lactational exposure to a maternal dose of 15mg/Kg B.W. of dibenzo[def,p]chrysene (DBC) resulted in significant morbidity of offspring due to an aggressive T-cell lymphoblastic lymphoma. As in previous studies, indole-3-carbinol (I3C, feed to the dam at 100, 500 or 1000ppm), derived from cruciferous vegetables, dose-dependently reduced lung tumor multiplicity and also increased offspring survival. Brussels sprout and broccoli sprout powders, selected for their relative abundance of I3C and the bioactive component sulforaphane (SFN), respectively, surprisingly enhanced DBC-induced morbidity and tumorigenesis when incorporated into the maternal diet at 10% wt/wt. Purified SFN, incorporated in the maternal diet at 400ppm, also decreased the latency of DBC-dependent morbidity. Interestingly, I3C abrogated the effect of SFN when the two purified compounds were administered in equimolar combination (500ppm I3C and 600ppm SFN). SFN metabolites measured in the plasma of neonates positively correlated with exposure levels via the maternal diet but not with offspring mortality. These findings provide justification for further study of the safety and bioactivity of cruciferous vegetable phytochemicals at supplemental concentrations during the perinatal period.


Assuntos
Anticarcinógenos/administração & dosagem , Benzopirenos/toxicidade , Carcinógenos/toxicidade , Indóis/administração & dosagem , Troca Materno-Fetal/efeitos dos fármacos , Tiocianatos/administração & dosagem , Animais , Dieta/métodos , Feminino , Isotiocianatos , Neoplasias Pulmonares/dietoterapia , Neoplasias Pulmonares/patologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Troca Materno-Fetal/fisiologia , Camundongos , Camundongos da Linhagem 129 , Leucemia-Linfoma Linfoblástico de Células T Precursoras/dietoterapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Gravidez , Sulfóxidos
5.
Pathogens ; 10(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34684180

RESUMO

HIV transmission risk is dependent on the infectivity of the HIV+ partner and personal susceptibility risk factors of the HIV- partner. The mucosal barrier, as the internal gatekeeper between environment and self, concentrates and modulates the internalization of ingested pathogens and pollutants. In this review, we summarize the localized effects of HIV and dietary toxin aflatoxin B1 (AFB1), a common pollutant in high HIV burden regions, e.g., at the mucosal barrier, and evidence for pollutant-viral interactions. We compiled literature on HIV and AFB1 geographic occurrences, mechanisms of action, related co-exposures, personal risk factors, and HIV key determinants of health. AFB1 exposure and HIV sexual transmission hotspots geographically co-localize in many low-income countries. AFB1 distributes to sexual mucosal tissues generating inflammation, microbiome changes and a reduction of mucosal barrier integrity, effects that are risk factors for increasing HIV susceptibility. AFB1 exposure has a positive correlation to HIV viral load, a risk factor for increasing the infectivity of the HIV+ partner. The AFB1 exposure and metabolism generates inflammation that recruits HIV susceptible cells and generates chemokine/cytokine activation in tissues exposed to HIV. Although circumstantial, the available evidence makes a compelling case for studies of AFB1 exposure as a risk factor for HIV transmission, and a modifiable new component for combination HIV prevention efforts.

6.
AIDS Res Hum Retroviruses ; 34(5): 421-429, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29455571

RESUMO

Tenofovir (TFV) disoproxil fumarate and emtricitabine (FTC) are used in combination for HIV treatment and pre-exposure prophylaxis (PrEP). TFV disoproxil fumarate is a prodrug that undergoes diester hydrolysis to TFV. FTC and TFV are nucleoside/nucleotide reverse transcriptase inhibitors that upon phosphorylation to nucleotide triphosphate analogs competitively inhibit HIV reverse transcriptase. We previously demonstrated that adenylate kinase 2, pyruvate kinase, muscle and pyruvate kinase, liver and red blood cell phosphorylate TFV in peripheral blood mononuclear cells (PBMC). To identify the kinases that phosphorylate FTC in PBMC, siRNAs targeted toward kinases that phosphorylate compounds structurally similar to FTC were delivered to PBMC, followed by incubation with FTC and the application of a matrix-assisted laser desorption ionization-mass spectrometry method and ultra high performance liquid chromatography-UV to detect the formation of FTC phosphates. Knockdown of deoxycytidine kinase decreased the formation of FTC-monophosphate, while siRNA targeted toward thymidine kinase 1 decreased the abundance of FTC-diphosphate. Knockdown of either cytidine monophosphate kinase 1 or phosphoglycerate kinase 1 decreased the abundance of FTC-triphosphate. Next-generation sequencing of genomic DNA isolated from 498 HIV-uninfected participants in the HIV Prevention Trials Network 069/AIDS Clinical Trials Group A5305 clinical study, revealed 17 previously unreported genetic variants of TFV or FTC phosphorylating kinases. Of note, four individuals were identified as simultaneous carriers of variants of both TFV and FTC activating kinases. These results identify the specific kinases that activate FTC in PBMC, while also providing further insight into the potential for genetic variation to impact TFV and FTC activation.


Assuntos
Antivirais/metabolismo , Emtricitabina/metabolismo , Variação Genética , Leucócitos Mononucleares/enzimologia , Fosfotransferases/metabolismo , Tenofovir/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosfotransferases/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Food Chem Toxicol ; 115: 136-147, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29518434

RESUMO

Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is a known human carcinogen. In non-smoking adults greater than 95% of BaP exposure is through diet. The carcinogenicity of BaP is utilized by the U.S. EPA to assess relative potency of complex PAH mixtures. PAH relative potency factors (RPFs, BaP = 1) are determined from high dose animal data. We employed accelerator mass spectrometry (AMS) to determine pharmacokinetics of [14C]-BaP in humans following dosing with 46 ng (an order of magnitude lower than human dietary daily exposure and million-fold lower than animal cancer models). To assess the impact of co-administration of food with a complex PAH mixture, humans were dosed with 46 ng of [14C]-BaP with or without smoked salmon. Subjects were asked to avoid high BaP-containing diets and a 3-day dietary questionnaire given to assess dietary exposure prior to dosing and three days post-dosing with [14C]-BaP. Co-administration of smoked salmon, containing a complex mixture of PAHs with an RPF of 460 ng BaPeq, reduced and delayed absorption. Administration of canned commercial salmon, containing very low amounts of PAHs, showed the impacts on pharmacokinetics were not due to high amounts of PAHs but rather a food matrix effect.


Assuntos
Benzo(a)pireno/farmacocinética , Carcinógenos/farmacocinética , Produtos Pesqueiros/análise , Salmão/metabolismo , Adulto , Idoso , Animais , Benzo(a)pireno/metabolismo , Radioisótopos de Carbono/análise , Carcinógenos/metabolismo , Culinária , Feminino , Produtos Pesqueiros/efeitos adversos , Inocuidade dos Alimentos , Humanos , Masculino , Pessoa de Meia-Idade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Adulto Jovem
8.
Rev Environ Health ; 32(1-2): 73-81, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27935856

RESUMO

The male reproductive system is acutely and uniquely sensitive to a variety of toxicities, including those induced by environmental pollutants throughout the lifespan. Early life hormonal and morphological development results in several especially sensitive critical windows of toxicity risk associated with lifelong decreased reproductive health and fitness. Male factor infertility can account for over 40% of infertility in couples seeking treatment, and 44% of infertile men are diagnosed with idiopathic male infertility. Human environmental exposures are poorly understood due to limited available data. The latency between maternal and in utero exposure and a diagnosis in adulthood complicates the correlation between environmental exposures and infertility. The results from this review include recommendations for more and region specific monitoring of polycyclic aromatic hydrocarbon (PAH) exposure, longitudinal and clinical cohort considerations of exposure normalization, gene-environment interactions, in utero exposure studies, and controlled mechanistic animal experiments. Additionally, it is recommended that detailed semen analysis and male fertility data be included as endpoints in environmental exposure cohort studies due to the sensitivity of the male reproductive system to environmental pollutants, including PAHs.


Assuntos
Exposição Ambiental , Poluentes Ambientais/toxicidade , Infertilidade Masculina/induzido quimicamente , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA