Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nucleic Acids Res ; 50(21): 12558-12577, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36464236

RESUMO

The PglZ family of proteins belongs to the alkaline phosphatase superfamily, which consists of metallohydrolases with limited sequence identity but similar metal-coordination architectures in otherwise divergent active sites. Proteins with a well-defined PglZ domain are ubiquitous among prokaryotes as essential components of BREX phage defence systems and two-component systems (TCSs). Whereas other members of the alkaline phosphatase superfamily are well characterized, the activity, structure and biological function of PglZ family proteins remain unclear. We therefore investigated the structure and function of PorX, an orphan response regulator of the Porphyromonas gingivalis TCS containing a putative PglZ effector domain. The crystal structure of PorX revealed a canonical receiver domain, a helical bundle, and an unprecedented PglZ domain, similar to the general organization of the phylogenetically related BREX-PglZ proteins. The PglZ domain of PorX features an active site cleft suitable for large substrates. An extensive search for substrates revealed that PorX is a phosphodiesterase that acts on cyclic and linear oligonucleotides, including signalling molecules such as cyclic oligoadenylates. These results, combined with mutagenesis, biophysical and enzymatic analysis, suggest that PorX coordinates oligonucleotide signalling pathways and indirectly regulates gene expression to control the secretion of virulence factors.


Assuntos
Proteínas de Bactérias , Fatores de Virulência , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Oligonucleotídeos , Fosfatase Alcalina , Expressão Gênica
2.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593635

RESUMO

Porphyromonas gingivalis is a keystone pathogen of the human dysbiotic oral microbiome that causes severe periodontitis. It employs a type-IX secretion system (T9SS) to shuttle proteins across the outer membrane (OM) for virulence. Uniquely, T9SS cargoes carry a C-terminal domain (CTD) as a secretion signal, which is cleaved and replaced with anionic lipopolysaccharide by transpeptidation for extracellular anchorage to the OM. Both reactions are carried out by PorU, the only known dual-function, C-terminal signal peptidase and sortase. PorU is itself secreted by the T9SS, but its CTD is not removed; instead, intact PorU combines with PorQ, PorV, and PorZ in the OM-inserted "attachment complex." Herein, we revealed that PorU transits between active monomers and latent dimers and solved the crystal structure of the ∼260-kDa dimer. PorU has an elongated shape ∼130 Å in length and consists of seven domains. The first three form an intertwined N-terminal cluster likely engaged in substrate binding. They are followed by a gingipain-type catalytic domain (CD), two immunoglobulin-like domains (IGL), and the CTD. In the first IGL, a long "latency ß-hairpin" protrudes ∼30 Å from the surface to form an intermolecular ß-barrel with ß-strands from the symmetric CD, which is in a latent conformation. Homology modeling of the competent CD followed by in vivo validation through a cohort of mutant strains revealed that PorU is transported and functions as a monomer through a C690/H657 catalytic dyad. Thus, dimerization is an intermolecular mechanism for PorU regulation to prevent untimely activity until joining the attachment complex.


Assuntos
Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Proteínas de Membrana/genética , Porphyromonas gingivalis/genética , Serina Endopeptidases/genética , Catálise , Domínios Proteicos/genética , Transporte Proteico/genética , Virulência/genética
3.
Proteins ; 91(8): 1007-1020, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912614

RESUMO

Bacterial fibrillar adhesins are specialized extracellular polypeptides that promote the attachment of bacteria to the surfaces of other cells or materials. Adhesin-mediated interactions are critical for the establishment and persistence of stable bacterial populations within diverse environmental niches and are important determinants of virulence. The fibronectin (Fn)-binding fibrillar adhesin CshA, and its paralogue CshB, play important roles in host colonization by the oral commensal and opportunistic pathogen Streptococcus gordonii. As paralogues are often catalysts for functional diversification, we have probed the early stages of structural and functional divergence in Csh proteins by determining the X-ray crystal structure of the CshB adhesive domain NR2 and characterizing its Fn-binding properties in vitro. Despite sharing a common fold, CshB_NR2 displays an ~1.7-fold reduction in Fn-binding affinity relative to CshA_NR2. This correlates with reduced electrostatic charge in the Fn-binding cleft. Complementary bioinformatic studies reveal that homologues of CshA/B_NR2 domains are widely distributed in both Gram-positive and Gram-negative bacteria, where they are found housed within functionally cryptic multi-domain polypeptides. Our findings are consistent with the classification of Csh adhesins and their relatives as members of the recently defined polymer adhesin domain (PAD) family of bacterial proteins.


Assuntos
Antibacterianos , Proteínas de Membrana , Ligantes , Proteínas de Membrana/química , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/química
4.
J Biol Chem ; 293(28): 11088-11099, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29784881

RESUMO

In higher eukaryotes, several ATP-utilizing enzymes known as hexokinases activate glucose in the glycolysis pathway by phosphorylation to glucose 6-phosphate. In contrast to canonical hexokinases, which use ATP, ADP-dependent glucokinase (ADPGK) catalyzes noncanonical phosphorylation of glucose to glucose 6-phosphate using ADP as a phosphate donor. Initially discovered in Archaea, the human homolog of ADPGK was described only recently. ADPGK's involvement in modified bioenergetics of activated T cells has been postulated, and elevated ADPGK expression has been reported in various cancer tissues. However, the physiological role of ADPGK is still poorly understood, and effective ADPGK inhibitors still await discovery. Here, we show that 8-bromo-substituted adenosine nucleotide inhibits human ADPGK. By solving the crystal structure of archaeal ADPGK in complex with 8-bromoadenosine phosphate (8-Br-AMP) at 1.81 Å resolution, we identified the mechanism of inhibition. We observed that 8-Br-AMP is a competitive inhibitor of ADPGK and that the bromine substitution induces marked structural changes within the protein's active site by engaging crucial catalytic residues. The results obtained using the Jurkat model of activated human T cells suggest its moderate activity in a cellular setting. We propose that our structural insights provide a critical basis for rational development of novel ADPGK inhibitors.


Assuntos
Adenosina/análogos & derivados , Glucoquinase/química , Adenosina/química , Adenosina/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Glucoquinase/antagonistas & inibidores , Glucose/metabolismo , Humanos , Células Jurkat , Conformação Proteica
5.
Biol Chem ; 398(3): 395-409, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27997347

RESUMO

Tannerella forsythia is a periodontal pathogen expressing six secretory proteolytic enzymes with a unique multidomain structure referred to as KLIKK proteases. Two of these proteases, karilysin and mirolysin, were previously shown to protect the bacterium against complement-mediated bactericidal activity. The latter metalloprotease, however, was not characterized at the protein level. Therefore, we purified recombinant mirolysin and subjected it to detailed biochemical characterization. Mirolysin was obtained as a 66 kDa zymogen, which autoproteolytically processed itself into a 31 kDa active form via truncations at both the N- and C-termini. Further autodegradation was prevented by calcium. Substrate specificity was determined by the S1' subsite of the substrate-binding pocket, which shows strong preference for Arg and Lys at the carbonyl side of a scissile peptide bond (P1' residue). The protease cleaved an array of host proteins, including human fibronectin, fibrinogen, complement proteins C3, C4, and C5, and the antimicrobial peptide, LL-37. Degradation of LL-37 abolished not only the bactericidal activity of the peptide, but also its ability to bind lipopolysaccharide (LPS), thus quenching the endotoxin proinflammatory activity. Taken together, these results indicate that, through cleavage of LL-37 and complement proteins, mirolysin might be involved in evasion of the host immune response.

6.
Org Biomol Chem ; 12(17): 2675-85, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24643508

RESUMO

The Sortase A (SrtA) enzyme from Staphylococcus aureus catalyses covalent attachment of protein substrates to pentaglycine cross-bridges in the Gram positive bacterial cell wall. In vitro SrtA-mediated protein ligation is now an important protein engineering tool for conjugation of substrates containing the LPXTGX peptide recognition sequence to oligo-glycine nucleophiles. In order to explore the use of alternative nucleophiles in this system, five different rhodamine-labelled compounds, with N-terminal nucleophilic amino acids, triglycine, glycine, and lysine, or N-terminal non-amino acid nucleophiles ethylenediamine and cadaverine, were synthesized. These compounds were tested for their relative abilities to function as nucleophiles in SrtA-mediated bioconjugation reactions. N-Terminal triglycine, glycine and ethylenediamine were all efficient in labelling a range of LPETGG containing recombinant antibody and scaffold proteins and peptides, while reduced activity was observed for the other nucleophiles across the range of proteins and peptides studied. Expansion of the range of available nucleophiles which can be utilised in SrtA-mediated bioconjugation expands the range of potential applications for this technology. As a demonstration of the utility of this system, SrtA coupling was used to conjugate the triglycine rhodamine-labelled nucleophile to the C-terminus of an Im7 scaffold protein displaying Aß, a neurologically important peptide implicated in Alzheimer's disease. Purified, labelled protein showed Aß-specific targeting to mammalian neuronal cells. Demonstration of targeting neuronal cells with a chimeric protein illustrates the power of this system, and suggests that SrtA-mediated direct cell-surface labelling and visualisation is an achievable goal.


Assuntos
Aminoaciltransferases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Embrião de Mamíferos/metabolismo , Neurônios/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Etilenodiaminas/metabolismo , Imunofluorescência , Fragmentos Fab das Imunoglobulinas/metabolismo , Camundongos , Dados de Sequência Molecular , Neurônios/citologia , Oligopeptídeos/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/metabolismo , Anticorpos de Cadeia Única/metabolismo , Espectrometria de Massas por Ionização por Electrospray
7.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798656

RESUMO

The Type-IX secretion system (T9SS) is a nanomachinery utilized by bacterial pathogens to facilitate infection. The system is regulated by a signaling cascade serving as its activation switch. A pivotal member in this cascade, the response regulator protein PorX, represents a promising drug target to prevent the secretion of virulence factors. Here, we provide a comprehensive characterization of PorX both in vitro and in vivo . First, our structural studies revealed PorX harbours a unique enzymatic effector domain, which, surprisingly, shares structural similarities with the alkaline phosphatase superfamily, involved in nucleotide and lipid signaling pathways. Importantly, such pathways have not been associated with the T9SS until now. Enzymatic characterization of PorX's effector domain revealed a zinc-dependent phosphodiesterase activity, with active site dimensions suitable to accommodate a large substrate. Unlike typical response regulators that dimerize via their receiver domain upon phosphorylation, we found that zinc can also induce conformational changes and promote PorX's dimerization via an unexpected interface. These findings suggest that PorX can serve as a cellular zinc sensor, broadening our understanding of its regulatory mechanisms. Despite the strict conservation of PorX in T9SS-utilizing bacteria, we demonstrate that PorX is essential for virulence factors secretion in Porphyromonas gingivalis and affects metabolic enzymes secretion in the non-pathogenic Flavobacterium johnsoniae , but not for the secretion of gliding adhesins. Overall, this study advances our structural and functional understanding of PorX, highlighting its potential as a druggable target for intervention strategies aimed at disrupting the T9SS and mitigating virulence in pathogenic species.

8.
J Med Chem ; 66(23): 15715-15727, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38039505

RESUMO

Here, we report the fragment-based drug discovery of potent and selective fragments that disrupt the Spire2-FMN2 but not the Spire1-FMN2 interaction. Hit fragments were identified in a differential scanning fluorimetry-based screen of an in-house library of 755 compounds and subsequently validated in multiple orthogonal biophysical assays, including fluorescence polarization, microscale thermophoresis, and 1H-15N HSQC nuclear magnetic resonance. Extensive structure-activity relationships combined with molecular docking followed by chemical optimization led to the discovery of compound 13, which exhibits micromolar potency and high ligand efficiency (LE = 0.38). Therefore, this fragment represents a validated starting point for the future development of selective chemical probes targeting the Spire2-FMN2 interaction.


Assuntos
Descoberta de Drogas , Simulação de Acoplamento Molecular , Ligantes
9.
Chem Sci ; 14(4): 869-888, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755705

RESUMO

Periodontopathogenic Tannerella forsythia uniquely secretes six peptidases of disparate catalytic classes and families that operate as virulence factors during infection of the gums, the KLIKK-peptidases. Their coding genes are immediately downstream of novel ORFs encoding the 98-132 residue potempins (Pot) A, B1, B2, C, D and E. These are outer-membrane-anchored lipoproteins that specifically and potently inhibit the respective downstream peptidase through stable complexes that protect the outer membrane of T. forsythia, as shown in vivo. Remarkably, PotA also contributes to bacterial fitness in vivo and specifically inhibits matrix metallopeptidase (MMP) 12, a major defence component of oral macrophages, thus featuring a novel and highly-specific physiological MMP inhibitor. Information from 11 structures and high-confidence homology models showed that the potempins are distinct ß-barrels with either a five-stranded OB-fold (PotA, PotC and PotD) or an eight-stranded up-and-down fold (PotE, PotB1 and PotB2), which are novel for peptidase inhibitors. Particular loops insert like wedges into the active-site cleft of the genetically-linked peptidases to specifically block them either via a new "bilobal" or the classic "standard" mechanism of inhibition. These results discover a unique, tightly-regulated proteolytic armamentarium for virulence and competence, the KLIKK-peptidase/potempin system.

10.
Biotechnol Bioeng ; 109(6): 1461-70, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22170409

RESUMO

Sortase-mediated protein ligation is a biological covalent conjugation system developed from the enzymatic cell wall display mechanism found in Staphylococcus aureus. This three-component system requires: (i) purified Sortase A (SrtA) enzyme; (ii) a substrate containing the LPXTG peptide recognition sequence; and (iii) an oligo-glycine acceptor molecule. We describe cloning of the single-chain antibody sc528, which binds to the extracellular domain of the epidermal growth factor receptor (EGFR), from the parental monoclonal antibody and incorporation of a LPETGG tag sequence. Utilizing recombinant SrtA, we demonstrate successful incorporation of biotin from GGG-biotin onto sc528. EGFR is an important cancer target and is over-expressed in human tumor tissues and cancer lines, such as the A431 epithelial carcinoma cells. SrtA-biotinylated sc528 specifically bound EGFR expressed on A431 cells, but not negative control lines. Similarly, when sc528 was labeled with fluorescein we observed antigen-specific labeling. The ability to introduce functionality into recombinant antibodies in a controlled, site-specific manner has applications in experimental, diagnostic, and potentially clinical settings. For example, we demonstrate addition of all three reaction components in situ within a biosensor flow cell, resulting in oriented covalent capture and presentation of sc528, and determination of precise affinities for the antibody-receptor interaction.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Receptores ErbB/antagonistas & inibidores , Anticorpos de Cadeia Única/metabolismo , Coloração e Rotulagem/métodos , Aminoaciltransferases/genética , Anticorpos Bloqueadores/genética , Anticorpos Bloqueadores/imunologia , Anticorpos Bloqueadores/metabolismo , Proteínas de Bactérias/genética , Biotina/metabolismo , Linhagem Celular Tumoral , Cisteína Endopeptidases/genética , Receptores ErbB/imunologia , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
11.
Mol Oral Microbiol ; 36(4): 225-232, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34032024

RESUMO

RagA and RagB proteins are major components of the outer membrane of the oral pathogen Porphyromonas gingivalis and, while recently suggested to represent a novel peptide uptake system, their full function is still under investigation. Herein, we (a) discuss the evidence that the rag locus contributes to P. gingivalis virulence; (b) provide insight to Rag protein potential biological function in macromolecular transport and other aspects of bacterial physiology; (c) address the host response to Rag proteins which are immunodominant and immunomodulatory; and (d) review the potential of Rag-focused therapeutic strategies for the control of periodontal diseases.


Assuntos
Doenças Periodontais , Porphyromonas gingivalis , Proteínas de Bactérias/genética , Humanos , Porphyromonas gingivalis/genética , Virulência
12.
Mol Oral Microbiol ; 36(6): 316-326, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34569151

RESUMO

The main etiological agent of periodontitis is the anaerobic bacterium Porphyromonas gingivalis. Virulence of this pathogen is controlled by various mechanisms and executed by major virulence factors including the gingipain proteases, peptidylarginine deiminase (PPAD), and RagB, an outer membrane macromolecular transport component. Although the structures and functions of these proteins are well characterized, little is known about their posttranslational maturation. Here, we determined the phosphoproteome of P. gingivalis in which phosphorylated tyrosine residues constitute over 80% of all phosphoresidues. Multiple phosphotyrosines were found in gingipains, PPAD, and RagB. Although mutation of phosphorylated residues in PPAD and RagB had no effect on secretion or activity, site-directed mutagenesis showed that phosphorylation in hemagglutinin/adhesin domains of RgpA and Kgp, and in the catalytic domain of RgpB, had a strong influence on secretion, processing, and enzymatic activity. Moreover, preventing phosphorylation of one gingipain influenced the others, suggesting multiple phosphorylation-dependent pathways of gingipain maturation in P. gingivalis. Various candidate kinases including Ptk1 BY kinase and ubiquitous bacterial kinase 1 (UbK1) may be involved, but their contribution to gingipain processing and activation remains to be confirmed.


Assuntos
Porphyromonas gingivalis , Fatores de Virulência , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Composição de Bases , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Hemaglutininas/genética , Fosforilação , Filogenia , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , RNA Ribossômico 16S , Análise de Sequência de DNA , Fatores de Virulência/genética
13.
Nanomaterials (Basel) ; 11(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467414

RESUMO

Understanding the modes of interaction between human monocytes/macrophages and engineered nanoparticles is the basis for assessing particle safety, in terms of activation of innate/inflammatory reactions, and their possible exploitation for medical applications. In vitro assessment of nanoparticle-macrophage interaction allows for examining the response of primary human cells, but the conventional 2D cultures do not reproduce the three-dimensional spacing of a tissue and the interaction of macrophages with the extracellular tissue matrix, conditions that shape macrophage recognition capacity and reactivity. Here, we have compared traditional 2D cultures with cultures on a 3D collagen matrix for evaluating the capacity gold nanoparticles to induce monocyte activation and subsequent innate memory in human blood monocytes in comparison to bacterial LPS. Results show that monocytes react to stimuli almost in the same way in 2D and 3D cultures in terms of production of TNFα and IL-6, but that notable differences are found when IL-8 and IL-1Ra are examined, in particular in the recall/memory response of primed cells to a second stimulation, with the 3D cultures showing cell activation and memory effects of nanoparticles better. In addition, the response variations in monocytes/macrophages from different donors point towards a personalized assessment of the nanoparticle effects on macrophage activation.

14.
mBio ; 12(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622730

RESUMO

Cargo proteins of the type IX secretion system (T9SS) in human pathogens from the Bacteroidetes phylum invariably possess a conserved C-terminal domain (CTD) that functions as a signal for outer membrane (OM) translocation. In Porphyromonas gingivalis, the CTD of cargos is cleaved off after translocation, and anionic lipopolysaccharide (A-LPS) is attached. This transpeptidase reaction anchors secreted proteins to the OM. PorZ, a cell surface-associated protein, is an essential component of the T9SS whose function was previously unknown. We recently solved the crystal structure of PorZ and found that it consists of two ß-propeller moieties, followed by a CTD. In this study, we performed structure-based modeling, suggesting that PorZ is a carbohydrate-binding protein. Indeed, we found that recombinant PorZ specifically binds A-LPS in vitro Binding was blocked by monoclonal antibodies that specifically react with a phosphorylated branched mannan in the anionic polysaccharide (A-PS) component of A-LPS, but not with the core oligosaccharide or the lipid A endotoxin. Examination of A-LPS derived from a cohort of mutants producing various truncations of A-PS confirmed that the phosphorylated branched mannan is indeed the PorZ ligand. Moreover, purified recombinant PorZ interacted with the PorU sortase in an A-LPS-dependent manner. This interaction on the cell surface is crucial for the function of the "attachment complex" composed of PorU, PorZ, and the integral OM ß-barrel proteins PorV and PorQ, which is involved in posttranslational modification and retention of T9SS cargos on the bacterial surface.IMPORTANCE Bacteria have evolved multiple systems to transport effector proteins to their surface or into the surrounding milieu. These proteins have a wide range of functions, including attachment, motility, nutrient acquisition, and toxicity in the host. Porphyromonas gingivalis, the human pathogen responsible for severe gum diseases (periodontitis), uses a recently characterized type IX secretion system (T9SS) to translocate and anchor secreted virulence effectors to the cell surface. Anchorage is facilitated by sortase, an enzyme that covalently attaches T9SS cargo proteins to a unique anionic lipopolysaccharide (A-LPS) moiety of P. gingivalis Here, we show that the T9SS component PorZ interacts with sortase and specifically binds A-LPS. Binding is mediated by a phosphorylated branched mannan repeat in A-LPS polysaccharide. A-LPS-bound PorZ interacts with sortase with significantly higher affinity, facilitating modification of cargo proteins by the cell surface attachment complex of the T9SS.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Cisteína Endopeptidases/metabolismo , Lipopolissacarídeos/metabolismo , Peptidil Transferases/metabolismo , Porphyromonas gingivalis/genética , Sistemas de Secreção Bacterianos/genética , Peptidil Transferases/genética , Porphyromonas gingivalis/enzimologia , Porphyromonas gingivalis/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico
15.
Front Immunol ; 12: 692165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421901

RESUMO

Engineered nanoparticles used for medical purposes must meet stringent safety criteria, which include immunosafety, i.e., the inability to activate possibly detrimental immune/inflammatory effects. Even medical nanomaterials devoid of direct immunotoxic or inflammatory effects may have an impact on human health if able to modify innate memory, which is the ability to "prime" future immune responses towards a different, possibly more detrimental reactivity. Although innate memory is usually protective, anomalous innate memory responses may be at the basis of immune pathologies. In this study, we have examined the ability of two nanomaterials commonly used for diagnostic imaging purposes, gold and iron oxide nanoparticles, to induce or modulate innate memory, using an in vitro model based on human primary monocytes. Monocytes were exposed in culture to nanoparticles alone or together with the bacterial agent LPS (priming phase/primary response), then rested for six days (extinction phase), and eventually challenged with LPS (memory/secondary response). The memory response to the LPS challenge was measured as changes in the production of inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra), as compared to unprimed monocytes. The results show that both types of nanoparticles can have an effect in the induction of memory, with changes observed in the cytokine production. By comparing nanomaterials of different shapes (spherical vs. rod-shaped gold particles) and different size (17 vs. 22 nm diameter spherical iron oxide particles), it was evident that innate memory could be differentially induced and modulated depending on size, shape and chemical composition. However, the main finding was that the innate memory effect of the particles was strongly donor-dependent, with monocytes from each donor showing a distinct memory profile upon priming with the same particles, thereby making impossible to draw general conclusions on the particle effects. Thus, in order to predict the effect of imaging nanoparticles on the innate memory of patients, a personalised profiling would be required, able to take in consideration the peculiarities of the individual innate immune reactivity.


Assuntos
Compostos Férricos/administração & dosagem , Ouro/administração & dosagem , Imunidade Inata/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/imunologia , Diagnóstico por Imagem , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Monócitos/metabolismo , Tamanho da Partícula
16.
Nanomaterials (Basel) ; 11(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917456

RESUMO

Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.

17.
Nat Microbiol ; 5(8): 1016-1025, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32393857

RESUMO

Porphyromonas gingivalis, an asaccharolytic member of the Bacteroidetes, is a keystone pathogen in human periodontitis that may also contribute to the development of other chronic inflammatory diseases. P. gingivalis utilizes protease-generated peptides derived from extracellular proteins for growth, but how these peptides enter the cell is not clear. Here, we identify RagAB as the outer-membrane importer for these peptides. X-ray crystal structures show that the transporter forms a dimeric RagA2B2 complex, with the RagB substrate-binding surface-anchored lipoprotein forming a closed lid on the RagA TonB-dependent transporter. Cryo-electron microscopy structures reveal the opening of the RagB lid and thus provide direct evidence for a 'pedal bin' mechanism of nutrient uptake. Together with mutagenesis, peptide-binding studies and RagAB peptidomics, our work identifies RagAB as a dynamic, selective outer-membrane oligopeptide-acquisition machine that is essential for the efficient utilization of proteinaceous nutrients by P. gingivalis.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oligopeptídeos/metabolismo , Porphyromonas gingivalis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Simulação de Dinâmica Molecular , Periodontite/microbiologia , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/crescimento & desenvolvimento , Conformação Proteica
18.
Nucleic Acid Ther ; 30(5): 289-298, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32379519

RESUMO

CD44 is a type I transmembrane glycoprotein interacting with a number of extracellular components, including hyaluronic acid (HA). CD44-HA axis is involved in a variety of processes, including adhesion, migration, differentiation, trafficking, and others. CD44 is overexpressed in several cancers where binding of HA induces signal transduction leading to activation of antiapoptotic proteins and factors linked to drug resistance. As such, CD44 has been implicated in cancer growth, progression, and metastasis. It has been convincingly demonstrated that blocking CD44-HA interaction decreases cancer cell survival and metastasis. In this study, using in vitro selection, we have developed DNA aptamers recognizing a HA-binding domain of CD44 with high affinity and specificity. The aptamers bind to CD44 with nanomolar affinities and efficiently inhibit the growth of leukemic cancer cells characterized by high expression of CD44. The selectivity is demonstrated by an irrelevant effect on cells characterized by low CD44 levels. The obtained aptamers broaden the existing landscape of potential approaches to the development of antitumor strategies based on inhibition of the CD44 axis.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Receptores de Hialuronatos/genética , Ácido Hialurônico/genética , Neoplasias/terapia , Aptâmeros de Nucleotídeos/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metástase Neoplásica , Neoplasias/genética , Neoplasias/patologia , Domínios Proteicos , Transdução de Sinais/efeitos dos fármacos
19.
Protein Sci ; 28(3): 478-486, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30638292

RESUMO

Citrullination is an essential post-translational modification in which the guanidinium group of protein and peptide arginines is deiminated by peptidylarginine deiminases (PADs). When deregulated, excessive citrullination leads to inflammation as in severe periodontal disease (PD) and rheumatoid arthritis (RA). Porphyromonas gingivalis is the major periodontopathogenic causative agent of PD and also an etiological agent of RA. It secretes a PAD, termed Porphyromonas PAD (PPAD), which is a virulence factor that causes aberrant citrullination. Analysis of P. gingivalis genomes of laboratory strains and clinical isolates unveiled a PPAD variant (PPAD-T2), which showed three amino-acid substitutions directly preceding catalytic Residue H236 (G231 N/E232 T/N235 D) when compared with PPAD from the reference strain (PPAD-T1). Mutation of these positions in the reference strain resulted in twofold higher cell-associated citrullinating activity. Similar to PPAD-T1, recombinant PPAD-T2 citrullinated arginines at the C-termini of general peptidic substrates but not within peptides. Catalytically, PPAD-T2 showed weaker substrate binding but higher turnover rates than PPAD-T1. In contrast, no differences were found in thermal stability. The 1.6 Å-resolution X-ray crystal structure of PPAD-T2 in complex with the general human PAD inhibitor, Cl-amidine, revealed that the inhibitor moiety is tightly bound and that mutations localize to a loop engaged in substrate/inhibitor binding. In particular, mutation G231 N caused a slight structural rearrangement, which probably originated the higher substrate turnover observed. The present data compare two natural PPAD variants and will set the pace for the design of specific inhibitors against P. gingivalis-caused PD.


Assuntos
Inibidores Enzimáticos/farmacologia , Porphyromonas gingivalis/enzimologia , Porphyromonas gingivalis/genética , Desiminases de Arginina em Proteínas/antagonistas & inibidores , Desiminases de Arginina em Proteínas/genética , Substituição de Aminoácidos , Infecções por Bacteroidaceae/tratamento farmacológico , Infecções por Bacteroidaceae/microbiologia , Cristalografia por Raios X , Humanos , Modelos Moleculares , Porphyromonas gingivalis/química , Conformação Proteica , Desiminases de Arginina em Proteínas/química , Desiminases de Arginina em Proteínas/metabolismo
20.
Toxins (Basel) ; 11(12)2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835838

RESUMO

Harmful cyanobacteria and their toxic metabolites constitute a big challenge for the production of safe drinking water. Microcystins (MC), chemically stable hepatotoxic heptapeptides, have often been involved in cyanobacterial poisoning incidents. A desirable solution for cyanobacterial management in lakes and ponds would eliminate both excess cyanobacteria and the MC that they potentially produce and release upon lysis. Hydrogen peroxide (H2O2) has recently been advocated as an efficient means of lysing cyanobacteria in lakes and ponds, however H2O2 (at least when used at typical concentrations) cannot degrade MC in environmental waters. Therefore, mesocosm experiments combining the cyanobacteria-lysing effect of H2O2 and the MC-degrading capacity of the enzyme MlrA were set up in the highly eutrophic Lake Ludos (Serbia). The H2O2 treatment decreased the abundance of the dominant cyanobacterial taxa Limnothrix sp., Aphanizomenon flos-aquae, and Planktothrix agardhii. The intracellular concentration of MC was reduced/eliminated by H2O2, yet the reduction of the extracellular MC could only be accomplished by supplementation with MlrA. However, as H2O2 was found to induce the expression of mcyB and mcyE genes, which are involved in MC biosynthesis, the use of H2O2 as a safe cyanobacteriocide still requires further investigation. In conclusion, the experiments showed that the combined use of H2O2 and MlrA is promising in the elimination of both excess cyanobacteria and their MC in environmental waters.


Assuntos
Cianobactérias/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Metaloproteases/farmacologia , Microcistinas/metabolismo , Fitoplâncton/efeitos dos fármacos , Cianobactérias/metabolismo , Lagos , Fitoplâncton/metabolismo , Sérvia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA