Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540220

RESUMO

MOTIVATION: Coiled-coil domains (CCD) are widespread in all organisms and perform several crucial functions. Given their relevance, the computational detection of CCD is very important for protein functional annotation. State-of-the-art prediction methods include the precise identification of CCD boundaries, the annotation of the typical heptad repeat pattern along the coiled-coil helices as well as the prediction of the oligomerization state. RESULTS: In this article, we describe CoCoNat, a novel method for predicting coiled-coil helix boundaries, residue-level register annotation, and oligomerization state. Our method encodes sequences with the combination of two state-of-the-art protein language models and implements a three-step deep learning procedure concatenated with a Grammatical-Restrained Hidden Conditional Random Field for CCD identification and refinement. A final neural network predicts the oligomerization state. When tested on a blind test set routinely adopted, CoCoNat obtains a performance superior to the current state-of-the-art both for residue-level and segment-level CCD. CoCoNat significantly outperforms the most recent state-of-the-art methods on register annotation and prediction of oligomerization states. AVAILABILITY AND IMPLEMENTATION: CoCoNat web server is available at https://coconat.biocomp.unibo.it. Standalone version is available on GitHub at https://github.com/BolognaBiocomp/coconat.


Assuntos
Aprendizado Profundo , Proteínas/química , Domínios Proteicos , Redes Neurais de Computação , Anotação de Sequência Molecular
2.
J Mol Biol ; 434(11): 167605, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35662454

RESUMO

Myristoylation (MYR) is a protein modification where a myristoyl group is covalently attached to an exposed (N-terminal) glycine residue. Glycine myristoylation occurs during protein translation (co-translation) or after (post-translation). Myristoylated proteins have a role in signal transduction, apoptosis, and pathogen-mediated processes and their prediction can help in functionally annotating the fraction of proteins undergoing MYR in different proteomes. Here we present SVMyr, a web server allowing the detection of both co- and post-translational myristoylation sites, based on Support Vector Machines (SVM). The input encodes composition and physicochemical features of the octapeptides, known to act as substrates and to physically interact with N-myristoyltransferases (NMTs), the enzymes catalyzing the myristoylation reaction. The method, adopting a cross validation procedure, scores with values of Area Under the Curve (AUC) and Matthews Correlation Coefficient (MCC) of 0.92 and 0.61, respectively. When benchmarked on an independent dataset including experimentally detected 88 medium/high confidence co-translational myristoylation sites and 528 negative examples, SVMyr outperforms available methods, with AUC and MCC equal to 0.91 and 0.58, respectively. A unique feature of SVMyr is the ability to predict post-translational myristoylation sites by coupling the trained SVMs with the detection of caspase cleavage sites, identified by searching regular motifs matching upstream caspase cleavage sites, as reported in literature. Finally, SVMyr confirms 96% of the UniProt set of the electronically annotated myristoylated proteins (31,048) and identifies putative myristoylomes in eight different proteomes, highlighting also new putative NMT substrates. SVMyr is freely available through a user-friendly web server at https://busca.biocomp.unibo.it/lipipred.


Assuntos
Uso da Internet , Ácido Mirístico , Processamento de Proteína Pós-Traducional , Proteínas , Proteoma , Caspases/metabolismo , Conjuntos de Dados como Assunto , Glicina/química , Ácido Mirístico/metabolismo , Proteínas/química , Proteoma/metabolismo
3.
J Mol Biol ; 433(11): 166729, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33972021

RESUMO

TransMembrane ß-Barrel (TMBB) proteins located in the outer membranes of Gram-negative bacteria are crucial for many important biological processes and primary candidates as drug targets. Structure determination of TMBB proteins is challenging and hence computational methods devised for the analysis of TMBB proteins are important for complementing experimental approaches. Here, we present a novel web server called BetAware-Deep that is able to accurately identify the topology of TMBB proteins (i.e. the number and orientation of membrane-spanning segments along the protein sequence) and to discriminate them from other protein types. The method in BetAware-Deep defines new features by exploiting a non-canonical computation of the hydrophobic moment and by adopting sequence-profile weighting of the White&Wimley hydrophobicity scale. These features are processed using a two-step approach based on deep learning and probabilistic graphical models. BetAware-Deep has been trained on a dataset comprising 58 TMBBs and benchmarked on a novel set of 15 TMBB proteins. Results showed that BetAware-Deep outperforms two recently released state-of-the-art methods for topology prediction, predicting correct topologies of 10 out of 15 proteins. TMBB detection was also assessed on a larger dataset comprising 1009 TMBB proteins and 7571 non-TMBB proteins. Even in this benchmark, BetAware-Deep scored at the level of top-performing methods. A web server has been developed allowing users to analyze input protein sequences and providing topology prediction together with a rich set of information including a graphical representation of the residue-level annotations and prediction probabilities. BetAware-Deep is available at https://busca.biocomp.unibo.it/betaware2.


Assuntos
Algoritmos , Internet , Proteínas de Membrana/química , Bases de Dados de Proteínas , Células Procarióticas , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA