Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Sci ; 114(11): 4355-4364, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37688294

RESUMO

Accumulating evidence suggests an association between iron metabolism and lung cancer progression. In biological systems, iron is present in either reduced (Fe2+ ; ferrous) or oxidized (Fe3+ ; ferric) states. However, ferrous and ferric iron exhibit distinct chemical and biological properties, the role of ferrous and ferric iron in lung cancer cell growth has not been clearly distinguished. In this study, we manipulated the balance between cellular ferrous and ferric iron status by inducing gene mutations involving the FBXL5-IRP2 axis, a ubiquitin-dependent regulatory system for cellular iron homeostasis, and determined its effects on lung cancer cell growth. FBXL5 depletion (ferrous iron accumulation) was found to suppress lung cancer cell growth, whereas IRP2 depletion (ferric iron accumulation) did not suppress such growth, suggesting that ferrous iron but not ferric iron plays a suppressive role in cell growth. Mechanistically, the depletion of FBXL5 impaired the degradation of the cyclin-dependent kinase inhibitor, p27, resulting in a delay in the cell cycle at the G1/S phase. FBXL5 depletion in lung cancer cells also improved the survival of tumor-bearing mice. Overall, this study highlights the important function of ferrous iron in cell cycle progression and lung cancer cell growth.


Assuntos
Proteínas F-Box , Neoplasias Pulmonares , Animais , Camundongos , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Neoplasias Pulmonares/genética , Ferro/metabolismo , Ubiquitina/metabolismo , Compostos Férricos , Proteínas F-Box/genética , Proteínas F-Box/metabolismo
2.
Commun Biol ; 7(1): 1343, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420139

RESUMO

Cancer cells adeptly manipulate the tumor microenvironment (TME) to evade host antitumor immunity. However, the role of cancer cell-intrinsic signaling in shaping the immunosuppressive TME remains unclear. Here, we found that the Hippo pathway in cancer cells orchestrates the TME by influencing the composition of cancer-associated fibroblasts (CAFs). In a 4T1 mouse breast cancer model, Hippo pathway kinases, large tumor suppressor 1 and 2 (LATS1/2), promoted the formation of neural cell adhesion molecule 1 (NCAM1)+alpha-smooth muscle actin (αSMA)+ CAFs expressing the transforming growth factor-ß, which is associated with T cell inactivation and dysfunction. Depletion of LATS1/2 in cancer cells resulted in a less immunosuppressive TME, indicated by the reduced proportions of NCAM1+αSMA+ CAFs and dysfunctional T cells. Notably, similar Hippo pathway-induced NCAM1+αSMA+ CAFs were observed in human breast cancer, highlighting the potential of TME-manipulating strategies to reduce immunosuppression in cancer immunotherapy.


Assuntos
Actinas , Antígeno CD56 , Via de Sinalização Hippo , Microambiente Tumoral , Animais , Camundongos , Actinas/metabolismo , Humanos , Feminino , Antígeno CD56/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Transdução de Sinais , Fibroblastos/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia
3.
JCI Insight ; 7(21)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36136589

RESUMO

Accumulating evidence suggests that high levels of Fusobacterium nucleatum in colorectal tumor tissues can be associated with poor prognosis in patients with colorectal cancer (CRC); however, data regarding distinct prognostic subgroups in F. nucleatum-positive CRC remain limited. Herein, we demonstrate that high-iron status was associated with a worse prognosis in patients with CRC with F. nucleatum. Patients with CRC presenting elevated serum transferrin saturation exhibited preferential iron deposition in macrophages in the tumor microenvironment. In addition, F. nucleatum induced CCL8 expression in macrophages via the TLR4/NF-κB signaling pathway, which was inhibited by iron deficiency. Mechanistically, iron attenuated the inhibitory phosphorylation of NF-κB p65 by activating serine/threonine phosphatases, augmenting tumor-promoting chemokine production in macrophages. Our observations indicate a key role for iron in modulating the NF-κB signaling pathway and suggest its prognostic potential as a determining factor for interpatient heterogeneity in F. nucleatum-positive CRC.


Assuntos
Neoplasias Colorretais , Infecções por Fusobacterium , Humanos , Fusobacterium nucleatum/metabolismo , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/microbiologia , NF-kappa B/metabolismo , Ferro , Neoplasias Colorretais/patologia , Macrófagos/metabolismo , Microambiente Tumoral , Quimiocina CCL8
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA