Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Immunol ; 210(12): 1925-1937, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37098890

RESUMO

COVID-19 has accounted for more than 6 million deaths worldwide. Bacillus Calmette-Guérin (BCG), the existing tuberculosis vaccine, is known to induce heterologous effects over other infections due to trained immunity and has been proposed to be a potential strategy against SARS-CoV-2 infection. In this report, we constructed a recombinant BCG (rBCG) expressing domains of the SARS-CoV-2 nucleocapsid and spike proteins (termed rBCG-ChD6), recognized as major candidates for vaccine development. We investigated whether rBCG-ChD6 immunization followed by a boost with the recombinant nucleocapsid and spike chimera (rChimera), together with alum, provided protection against SARS-CoV-2 infection in K18-hACE2 mice. A single dose of rBCG-ChD6 boosted with rChimera associated with alum elicited the highest anti-Chimera total IgG and IgG2c Ab titers with neutralizing activity against SARS-CoV-2 Wuhan strain when compared with control groups. Importantly, following SARS-CoV-2 challenge, this vaccination regimen induced IFN-γ and IL-6 production in spleen cells and reduced viral load in the lungs. In addition, no viable virus was detected in mice immunized with rBCG-ChD6 boosted with rChimera, which was associated with decreased lung pathology when compared with BCG WT-rChimera/alum or rChimera/alum control groups. Overall, our study demonstrates the potential of a prime-boost immunization system based on an rBCG expressing a chimeric protein derived from SARS-CoV-2 to protect mice against viral challenge.


Assuntos
COVID-19 , Mycobacterium bovis , Animais , Camundongos , Vacina BCG/genética , Proteínas Recombinantes de Fusão/genética , SARS-CoV-2 , Vacinas Sintéticas , COVID-19/prevenção & controle , Mycobacterium bovis/genética
2.
Anal Biochem ; 692: 115570, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38763320

RESUMO

Zinc plays a crucial role both in the immune system and endocrine processes. Zinc restriction in the diet has been shown to lead to degeneration of the endocrine pancreas, resulting in hormonal imbalance within the ß-cells. Proteostasismay vary depending on the stage of a pathophysiological process, which underscores the need for tools aimed at directly analyzing biological status. Among proteomics methods, MALDI-ToF-MS can serve as a rapid peptidomics tool for analyzing extracts or by histological imaging. Here we report the optimization of MALDI imaging mass spectrometry analysis of histological thin sections from mouse pancreas. This optimization enables the identification of the major islet peptide hormones as well as the major accumulated precursors and/or proteolytic products of peptide hormones. Cross-validation of the identified peptide hormones was performed by LC-ESI-MS from pancreatic islet extracts. Mice subjected to a zinc-restricted diet exhibited a relatively lower amount of peptide intermediates compared to the control group. These findings provide evidence for a complex modulation of proteostasis by micronutrients imbalance, a phenomenon directly accessed by MALDI-MSI.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Zinco , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Camundongos , Zinco/análise , Zinco/metabolismo , Hormônios Pancreáticos/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos C57BL , Pâncreas/metabolismo , Masculino
3.
Adv Exp Med Biol ; 1443: 33-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38409415

RESUMO

Mass spectrometry (MS) is a powerful analytical technique that plays a central role in modern protein analysis and the study of proteostasis. In the field of advanced molecular technologies, MS-based proteomics has become a cornerstone that is making a significant impact in the post-genomic era and as precision medicine moves from the research laboratory to clinical practice. The global dissemination of COVID-19 has spurred collective efforts to develop effective diagnostics, vaccines, and therapeutic interventions. This chapter highlights how MS seamlessly integrates with established methods such as RT-PCR and ELISA to improve viral identification and disease progression assessment. In particular, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) takes the center stage, unraveling intricate details of SARS-CoV-2 proteins, revealing modifications such as glycosylation, and providing insights critical to formulating therapies and assessing prognosis. However, high-throughput analysis of MALDI data presents challenges in manual interpretation, which has driven the development of programmatic pipelines and specialized packages such as MALDIquant. As we move forward, it becomes clear that integrating proteomic data with various omic findings is an effective strategy to gain a comprehensive understanding of the intricate biology of COVID-19 and ultimately develop targeted therapeutic paradigms.


Assuntos
COVID-19 , Proteômica , Humanos , Proteômica/métodos , COVID-19/diagnóstico , SARS-CoV-2 , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Proteínas , Teste para COVID-19
4.
J Chem Inf Model ; 62(4): 945-957, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35128923

RESUMO

The NS2B-NS3 protease from Zika virus (ZIKV NS2B-NS3pro) cleaves the viral polyprotein, being essential for its replication and a therapeutic target. Inhibitors that target the active site of ZIKV NS2B-NS3pro have been developed, but they tend to have unfavorable pharmacokinetic properties due to their highly positive charge. Thus, the characterization of allosteric sites in this protease provides new strategies for inhibitor development. Here, we characterized a new allosteric pocket in ZIKV NS2B-NS3pro, analogous to the one previously described for the dengue virus protease. Molecular dynamics simulations indicate the presence of cavities around the residue Ala125, sampling protein conformations in which they are connected to the active site. This link between the residue Ala125 and the active site residues was reinforced by correlation network analysis. To experimentally verify the existence of this allosteric mechanism, we expressed and purified the Ala125Cys mutant of ZIKV NS2B-NS3pro and demonstrated that this variant is inhibited by the thiol-containing chemical probes 5,5'-dithiobis-(2-nitrobenzoic acid) and aldrithiol, which do not affect the activity of the wild-type protein. Inhibition of the mutant protein is reversed by the addition of strong reducing agents, supporting the involvement of Cys125 in covalent bond formation and enzyme inhibition. Together, our results provide experimental evidence for an allosteric pocket in ZIKV NS2B-NS3pro, in the region around Ala125, and computational insights on the structural connection between this region and the enzyme active site.


Assuntos
Zika virus , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Conformação Proteica , Serina Endopeptidases , Proteínas não Estruturais Virais/química , Proteínas Virais
5.
Molecules ; 27(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744938

RESUMO

Glioblastoma (GB) is the most malignant form of primary astrocytoma, accounting for more than 60% of all brain tumors in adults. Nowadays, due to the development of multidrug resistance causing relapses to the current treatments and the development of severe side effects resulting in reduced survival rates, new therapeutic approaches are needed. The genus Plectranthus belongs to the Lamiaceae family and is known to be rich in abietane-type diterpenes, which possess antitumor activity. Specifically, P. hadiensis (Forssk.) Schweinf. ex Sprenger has been documented for the use against brain tumors. Therefore, the aim of this work was to perform the bioguided isolation of compounds from the acetonic extract of P. hadiensis stems and to investigate the in vitro antiglioblastoma activity of the extract and its isolated constituents. After extraction, six fractions were obtained from the acetonic extract of P. hadiensis stems. In a preliminary biological screening, the fractions V and III showed the highest antioxidant and antimicrobial activities. None of the fractions were toxic in the Artemia salina assay. We obtained different abietane-type diterpenes such as 7α-acetoxy-6ß-hydroxyroyleanone (Roy) and 6ß,7ß-dihydroxyroyleanone (DiRoy), which was also in agreement with the HPLC-DAD profile of the extract. Furthermore, the antiproliferative activity was assessed in a glioma tumor cell line panel by the Alamar blue assay. After 48 h treatment, Roy exerted strong antiproliferative/cytotoxic effects against tumor cells with low IC50 values among the different cell lines. Finally, we synthesized a new fluorescence derivative in this study to evaluate the biodistribution of Roy. The uptake of BODIPY-7α-acetoxy-6ß-hydroxyroyleanone by GB cells was associated with increased intracellular fluorescence, supporting the antiproliferative effects of Roy. In conclusion, Roy is a promising natural compound that may serve as a lead compound for further derivatization to develop future therapeutic strategies against GB.


Assuntos
Neoplasias Encefálicas , Plectranthus , Abietanos/química , Neoplasias Encefálicas/tratamento farmacológico , Humanos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Plectranthus/química , Distribuição Tecidual
6.
BMC Bioinformatics ; 22(1): 1, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33388027

RESUMO

BACKGROUND: Protein-peptide interactions play a fundamental role in a wide variety of biological processes, such as cell signaling, regulatory networks, immune responses, and enzyme inhibition. Peptides are characterized by low toxicity and small interface areas; therefore, they are good targets for therapeutic strategies, rational drug planning and protein inhibition. Approximately 10% of the ethical pharmaceutical market is protein/peptide-based. Furthermore, it is estimated that 40% of protein interactions are mediated by peptides. Despite the fast increase in the volume of biological data, particularly on sequences and structures, there remains a lack of broad and comprehensive protein-peptide databases and tools that allow the retrieval, characterization and understanding of protein-peptide recognition and consequently support peptide design. RESULTS: We introduce Propedia, a comprehensive and up-to-date database with a web interface that permits clustering, searching and visualizing of protein-peptide complexes according to varied criteria. Propedia comprises over 19,000 high-resolution structures from the Protein Data Bank including structural and sequence information from protein-peptide complexes. The main advantage of Propedia over other peptide databases is that it allows a more comprehensive analysis of similarity and redundancy. It was constructed based on a hybrid clustering algorithm that compares and groups peptides by sequences, interface structures and binding sites. Propedia is available through a graphical, user-friendly and functional interface where users can retrieve, and analyze complexes and download each search data set. We performed case studies and verified that the utility of Propedia scores to rank promissing interacting peptides. In a study involving predicting peptides to inhibit SARS-CoV-2 main protease, we showed that Propedia scores related to similarity between different peptide complexes with SARS-CoV-2 main protease are in agreement with molecular dynamics free energy calculation. CONCLUSIONS: Propedia is a database and tool to support structure-based rational design of peptides for special purposes. Protein-peptide interactions can be useful to predict, classifying and scoring complexes or for designing new molecules as well. Propedia is up-to-date as a ready-to-use webserver with a friendly and resourceful interface and is available at: https://bioinfo.dcc.ufmg.br/propedia.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados de Proteínas , Peptídeos/química , Proteínas/química , Algoritmos , Humanos
7.
Br J Haematol ; 194(1): 168-173, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33993488

RESUMO

Our group recently showed that the (ASNase) formulation available in Brazil from 2017 to 2018 when used at the same dose and frequency as the formulation provided previously did not reach the activity considered therapeutic. Based on these, our goal was to assess the impact of these facts on the prognosis of children with ALL at different oncology centers. A multicentre retrospective observational study followed by a prospective follow-up. Patients aged >1 and <18 years in first-line treatment followed up at 10 referral centres, between 2014 and 2018 who received the formulation Leuginase® were identified (Group B). For each patient, the centre registered 2 patients who received ASNase in the presentation of Aginasa® exclusively (Group A). Data collection was registered using (Redcap® ). A total of 419 patients were included; 282 in Group A and 137 in B. Group A had a 3-year OS and EFS of 91·8% and 84·8% respectively, while Group B had a 3-year OS of 83·8% (P = 0·003) and EFS of 76·1% (P = 0·008). There was an impact on 3-year OS and EFS of children who received a formulation. This result highlights the importance of evaluating ASNase and monitoring its activity.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Asparaginase/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adolescente , Asparaginase/administração & dosagem , Brasil/epidemiologia , Criança , Pré-Escolar , Composição de Medicamentos , Feminino , Seguimentos , Humanos , Lactente , Estimativa de Kaplan-Meier , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Intervalo Livre de Progressão , Estudos Prospectivos , Estudos Retrospectivos
8.
Pharmacol Res ; 169: 105638, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933637

RESUMO

Glioblastoma (GBM) is the most common primary tumor of the central nervous system. Current treatments available for GBM entails surgical resection followed by temozolomide chemotherapy and/or radiotherapy, which are associated with multidrug resistance and severe side effects. While this treatment could yield good results, in almost all cases, patients suffer from relapse, which leads to reduced survival rates. Thus, therapeutic approaches with improved efficiency and reduced off-target risks are needed to overcome these problems. Regarding this, natural products appear as a safe and attractive strategy as chemotherapeutic agents or adjuvants in the treatment of GBM. Besides the increasing role of natural compounds for chemoprevention of GBM, it has been proposed to prevent carcinogenesis and metastasis of GBM. Numerous investigations showed that natural products are able to inhibit proliferation and angiogenesis, to induce apoptosis, and to target GBM stem cells, which are associated with tumor development and recurrence. This review gives a timely and comprehensive overview of the current literature regarding chemoprevention and therapy of GBM by natural products with a focus on essential oils and phenolic compounds and their molecular mechanisms.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Óleos Voláteis/uso terapêutico , Fenóis/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Animais , Produtos Biológicos/uso terapêutico , Neoplasias Encefálicas/prevenção & controle , Glioblastoma/prevenção & controle , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/prevenção & controle
9.
PLoS Pathog ; 14(2): e1006870, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29425229

RESUMO

Protease inhibitors have important function during homeostasis, inflammation and tissue injury. In this study, we described the role of Schistosoma mansoni SmKI-1 serine protease inhibitor in parasite development and as a molecule capable of regulating different models of inflammatory diseases. First, we determine that recombinant (r) SmKI-1 and its Kunitz domain but not the C-terminal region possess inhibitory activity against trypsin and neutrophil elastase (NE). To better understand the molecular basis of NE inhibition by SmKI-1, molecular docking studies were also conducted. Docking results suggest a complete blockage of NE active site by SmKI-1 Kunitz domain. Additionally, rSmKI-1 markedly inhibited the capacity of NE to kill schistosomes. In order to further investigate the role of SmKI-1 in the parasite, we designed specific siRNA to knockdown SmKI-1 in S. mansoni. SmKI-1 gene suppression in larval stage of S. mansoni robustly impact in parasite development in vitro and in vivo. To determine the ability of SmKI-1 to interfere with neutrophil migration and function, we tested SmKI-1 anti-inflammatory potential in different murine models of inflammatory diseases. Treatment with SmKI-1 rescued acetaminophen (APAP)-mediated liver damage, with a significant reduction in both neutrophil recruitment and elastase activity. In the model of gout arthritis, this protein reduced neutrophil accumulation, IL-1ß secretion, hypernociception, and overall pathological score. Finally, we demonstrated the ability of SmKI-1 to inhibit early events that trigger neutrophil recruitment in pleural cavities of mice in response to carrageenan. In conclusion, SmKI-1 is a key protein in S. mansoni survival and it has the ability to inhibit neutrophil function as a promising therapeutic molecule against inflammatory diseases.


Assuntos
Inflamação/metabolismo , Elastase de Leucócito/metabolismo , Neutrófilos/efeitos dos fármacos , Schistosoma mansoni , Inibidores de Serina Proteinase/metabolismo , Inibidores de Serina Proteinase/farmacologia , Animais , Células Cultivadas , Feminino , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simulação de Acoplamento Molecular , Neutrófilos/fisiologia , Ligação Proteica , Schistosoma mansoni/imunologia , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/metabolismo
10.
J Biol Inorg Chem ; 24(7): 1087-1103, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31620894

RESUMO

Synthesis of dinuclear oxadiazole-adamantane platinum(II) and palladium(II) complexes (PtO, PdO) and mononuclear thiazolidine derivative complexes (PtT, PdT) was described. Characterization was performed by elemental analysis, infrared, UV-visible, 1H, 13C, 195Pt NMR spectra, MS spectroscopy and single crystal X-ray diffraction. The cytotoxicity by MTT assay against tumor and normal cell lines with or without extracellular GSH was also investigated. In general, mononuclear complexes containing thiazolidine-adamantane ligands were more cytotoxic than oxadiazole-adamantane derivatives. PtT complex proved to be as active as cisplatin. Dinuclear compounds were considered inactive to cells in evaluated conditions, due to their high stability with ligands in a chelated and bridged way. Results suggest that GSH cannot be considered a target. DNA- and BSA-binding interactions were evaluated using UV-visible and fluorescence spectroscopy, intercalating dyes and molecular docking. Upon coordination to platinum(II), the cytotoxic effect was appreciably improved against tested cell lines, in comparison to free thiazolidine ligand. Comparing thiazolidine derivatives, it is noticeable that the less active compound (PdT) presents stronger interaction with BSA, while PtT has the weaker interaction with BSA and relatively strong binding to isolated DNA, resulting in the most cytotoxic complex. This work shows that the presence of metal is significant but it should be available for interaction. The high lability of palladium complex made this stay retainable in BSA and two metal atoms do not increase activity if it is not able to do any interaction.


Assuntos
Adamantano/química , Azóis/química , DNA/metabolismo , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Paládio/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cricetinae , DNA/química , Humanos , Lignanas , Camundongos , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Compostos Organoplatínicos/metabolismo
11.
Cell Biol Int ; 43(4): 429-436, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30672061

RESUMO

In this study we provide new evidence that the columnar vesicles of the sea anemone Bunodosoma cangicum are toxic in vivo and contain at least two active polypeptides, a neurotoxic and an apoptosis inducing polypeptide. Here we show that it is also an effective inducer of apoptosis in vivo in the nematode Caenorhabditis elegans. In addition, the anemone peptides rapidly paralyze C. elegans, and set in motion a sequence of events that result in the complete dissolution of the internal organs in adult animals within 60 min. Nematodes that survive the toxin treatment exhibit a decreased reproductive capacity. Interestingly, adult animals appear to be much more susceptible to the effects of the toxins than larval stages, suggesting possible developmentally dependent targets of the toxins. Here we also provide chemical characterization of the compounds through chromatographic analysis and mass spectrometry. Gel filtration chromatography coupled with reverse phase HPLC shows that our partially purified extract contains at least two principle components. Additionally, MALDI-TOF mass spectrometry analysis of our extract shows three principal compounds at 814.6, 2914.1, and 4360.3 m/z plus three other minor components or fragments. Mass spectrometry analysis also indicates the presence of three disulfide bridges. Which is in agreement with other characterizations of anemone venoms.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Anêmonas-do-Mar/metabolismo , Anêmonas-do-Mar/fisiologia , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Cromatografia em Gel/métodos , Cromatografia Líquida de Alta Pressão/métodos , Peptídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fenômenos Toxicológicos/fisiologia
12.
Br J Nutr ; 122(12): 1377-1385, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31551096

RESUMO

The characterisation of proteome and peptidome of adolescent mothers' breast milk brings important information to both mother's and infant's health; however, it has not been investigated. Bioactive peptides derived from milk proteins have numerous functions. The bioactivity of breast milk peptides includes anti-inflammatory and antimicrobial activities and regulation of gastrointestinal function. We aimed to characterise the proteome and peptidome of mature breast milk of adolescent mothers and investigate whether it is affected by lactational period. We used a combination of electrophoretic and nano-scale LC-quadrupole time-of-flight MS/MS (nLC-Q-TOF-MS/MS) techniques and bioinformatics to explore the proteome of human skimmed milk expressed by lactating adolescents in two groups according to postpartum period (up to 3 and over 5 weeks postpartum). This is the first study that analysed the proteome of adolescent mothers' breast milk produced during two periods of lactation using 1D-electrophoresis combined with nLC-Q-TOF-MS/MS analysis. Our results showed that the protein composition of adolescent milk varies independently of lactation stage and showed high inter-individual variation. A total of 424 proteins were identified in skimmed milk, of which 137 proteins were common to both groups. Most of the peptides found in adolescents' breast milk were not derived from major proteins in milk. Association maps showed several interactions between groups of peptides that pointed to the relevance of breast milk peptides to neonatal defensive system.


Assuntos
Leite Humano/química , Peptídeos/química , Proteoma/química , Adolescente , Biologia Computacional , Eletroforese , Feminino , Humanos , Hidrólise , Recém-Nascido , Lactação , Mães , Gravidez , Mapeamento de Interação de Proteínas , Proteômica , Software , Espectrometria de Massas em Tandem
13.
J Biol Chem ; 292(6): 2379-2394, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28049727

RESUMO

Hypertrophic cardiomyopathy (HCM) is one of the most common cardiomyopathies and a major cause of sudden death in young athletes. The Ca2+ sensor of the sarcomere, cardiac troponin C (cTnC), plays an important role in regulating muscle contraction. Although several cardiomyopathy-causing mutations have been identified in cTnC, the limited information about their structural defects has been mapped to the HCM phenotype. Here, we used high-resolution electron-spray ionization mass spectrometry (ESI-MS), Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG-RD), and affinity measurements of cTnC for the thin filament in reconstituted papillary muscles to provide evidence of an allosteric mechanism in mutant cTnC that may play a role to the HCM phenotype. We showed that the D145E mutation leads to altered dynamics on a µs-ms time scale and deactivates both of the divalent cation-binding sites of the cTnC C-domain. CPMG-RD captured a low populated protein-folding conformation triggered by the Glu-145 replacement of Asp. Paradoxically, although D145E C-domain was unable to bind Ca2+, these changes along its backbone allowed it to attach more firmly to thin filaments than the wild-type isoform, providing evidence for an allosteric response of the Ca2+-binding site II in the N-domain. Our findings explain how the effects of an HCM mutation in the C-domain reflect up into the N-domain to cause an increase of Ca2+ affinity in site II, thus opening up new insights into the HCM phenotype.


Assuntos
Mutação , Miocárdio/metabolismo , Troponina C/metabolismo , Regulação Alostérica , Animais , Cardiomiopatia Hipertrófica/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Ratos , Ratos Wistar , Análise Espectral/métodos , Troponina C/química , Troponina C/genética
14.
J Biomol NMR ; 72(3-4): 179-192, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30535889

RESUMO

Human antigen R (HuR) functions as a major post-transcriptional regulator of gene expression through its RNA-binding activity. HuR is composed by three RNA recognition motifs, namely RRM1, RRM2, and RRM3. The two N-terminal RRM domains are disposed in tandem and contribute mostly to HuR interaction with adenine and uracil-rich elements (ARE) in mRNA. Here, we used a combination of NMR and electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) to characterize the structure, dynamics, RNA recognition, and dimerization of HuR RRM1. Our solution structure reveals a canonical RRM fold containing a 19-residue, intrinsically disordered N-terminal extension, which is not involved in RNA binding. NMR titration results confirm the primary RNA-binding site to the two central ß-strands, ß1 and ß3, for a cyclooxygenase 2 (Cox2) ARE I-derived, 7-nucleotide RNA ligand. We show by 15N relaxation that, in addition to the N- and C-termini, the ß2-ß3 loop undergoes fast backbone dynamics (ps-ns) both in the free and RNA-bound state, indicating that no structural ordering happens upon RNA interaction. ESI-IMS-MS reveals that HuR RRM1 dimerizes, however dimer population represents a minority. Dimerization occurs via the α-helical surface, which is oppositely orientated to the RNA-binding ß-sheet. By using a DNA analog of the Cox2 ARE I, we show that DNA binding stabilizes HuR RRM1 monomer and shifts the monomer-dimer equilibrium toward the monomeric species. Altogether, our results deepen the current understanding of the mechanism of RNA recognition employed by HuR.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Proteínas de Ligação a RNA/química , Proteínas Supressoras de Tumor/química , Sítios de Ligação , Dimerização , Humanos , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , RNA/química , RNA/metabolismo , Ribonucleosídeo Difosfato Redutase
15.
Dermatol Online J ; 23(5)2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28537869

RESUMO

Although uncommon, kwashiorkor continues to occur in developed, but mainly in developing nations. It is a type of protein-calorie malnutrition that occurs in the setting of insufficient protein intake in the presence of sufficient caloric intake. Skin and hair changes should prompt a thorough dietary history and appropriate dietary intervention. We report a case of a 12-month old girl in Belo Horizonte, Minas Gerais, Brazil, who presented with diffuse edema, desquamation, and irritability misdiagnosed as atopic dermatitis. The diagnosis was consistent with kwashiorkor as a result of severe dietary restriction. The mother had placed the child on a severely restrictive diet, consisting only of potatoes, gelatin, and juice as a consequence of the inability to breastfeed. Kwashiorkor is often underdiagnosed or misdiagnosed and if unrecognized or untreated, may be devastating. This makes it imperative that physicians consider this diagnosis, recognize potential risk factors, and be prepared to accurately assess overall nutritional status of patients.


Assuntos
Dermatite Atópica/diagnóstico , Erros de Diagnóstico , Kwashiorkor/diagnóstico , Kwashiorkor/patologia , Brasil , Dieta , Feminino , Humanos , Lactente , Kwashiorkor/etiologia
16.
Biochemistry ; 55(13): 2043-53, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26982350

RESUMO

Translesion synthesis (TLS) is a mutagenic branch of cellular DNA damage tolerance that enables bypass replication over DNA lesions carried out by specialized low-fidelity DNA polymerases. The replicative bypass of most types of DNA damage is performed in a two-step process of Rev1/Polζ-dependent TLS. In the first step, a Y-family TLS enzyme, typically Polη, Polι, or Polκ, inserts a nucleotide across a DNA lesion. In the second step, a four-subunit B-family DNA polymerase Polζ (Rev3/Rev7/PolD2/PolD3 complex) extends the distorted DNA primer-template. The coordinated action of error-prone TLS enzymes is regulated through their interactions with the two scaffold proteins, the sliding clamp PCNA and the TLS polymerase Rev1. Rev1 interactions with all other TLS enzymes are mediated by its C-terminal domain (Rev1-CT), which can simultaneously bind the Rev7 subunit of Polζ and Rev1-interacting regions (RIRs) from Polη, Polι, or Polκ. In this work, we identified a previously unknown RIR motif in the C-terminal part of PolD3 subunit of Polζ whose interaction with the Rev1-CT is among the tightest mediated by RIR motifs. Three-dimensional structure of the Rev1-CT/PolD3-RIR complex determined by NMR spectroscopy revealed a structural basis for the relatively high affinity of this interaction. The unexpected discovery of PolD3-RIR motif suggests a mechanism of "inserter" to "extender" DNA polymerase switch upon Rev1/Polζ-dependent TLS, in which the PolD3-RIR binding to the Rev1-CT (i) helps displace the "inserter" Polη, Polι, or Polκ from its complex with Rev1, and (ii) facilitates assembly of the four-subunit "extender" Polζ through simultaneous interaction of Rev1-CT with Rev7 and PolD3 subunits.


Assuntos
Dano ao DNA , DNA Polimerase III/metabolismo , Replicação do DNA , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Motivos de Aminoácidos , Animais , Ligação Competitiva , DNA Polimerase III/química , DNA Polimerase III/genética , Cinética , Proteínas Mad2/química , Proteínas Mad2/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
17.
Biochemistry ; 53(18): 2890-902, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24738963

RESUMO

One of the ancestral features of thioredoxins is the presence of a water cavity. Here, we report that a largely hydrated, conserved, buried aspartic acid in the water cavity modulates the dynamics of the interacting loops of yeast thioredoxin 1 (yTrx1). It is well-established that the aspartic acid, Asp24 for yTrx1, works as a proton acceptor in the reduction of the target protein. We propose a complementary role for Asp24 of coupling hydration and conformational motion of the water cavity and interacting loops. The intimate contact between the water cavity and the interacting loops means that motion at the water cavity will affect the interacting loops and vice versa. The D24N mutation alters the conformational equilibrium for both the oxidized and reduced states, quenching the conformational motion in the water cavity. By measuring the hydration and molecular dynamics simulation of wild-type yTrx1 and the D24N mutant, we showed that Asn24 is more exposed to water than Asp24 and the water cavity is smaller in the mutant, closing the inner part of the water cavity. We discuss how the conformational equilibrium contributes to the mechanism of catalysis and H(+) exchange.


Assuntos
Tiorredoxinas/química , Asparagina/química , Ácido Aspártico/química , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Prótons , Saccharomyces cerevisiae/genética , Tiorredoxinas/genética , Água
19.
Biochimie ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936684

RESUMO

In hominids, including Homo sapiens, uric acid is the end product of purine catabolism. In contrast, other placental mammals further degrade uric acid to (S)-allantoin by enzymes such as urate oxidase (uricase), HIU hydrolase (HIUase), and OHCU decarboxylase. Some organisms, such as frogs and fish, hydrolyze (S)-allantoin to allantoate and eventually to (S)-ureidoglycolate and urea, while marine invertebrates convert urea to ammonium. In H. sapiens, mutations in the uricase gene led to a reduction in the selective pressure for maintaining the integrity of the genes encoding the other enzymes of the purine catabolism pathway, resulting in an accumulation of uric acid. The hyperuricemia resulting from this accumulation is associated with gout, cardiovascular disease, diabetes, and preeclampsia. Many commonly used drugs, such as aspirin, can also increase uric acid levels. Despite the apparent absence of these enzymes in H. sapiens, there appears to be production of transcripts for uricase (UOX), HIUase (URAHP), OHCU decarboxylase (URAD), and allantoicase (ALLC). While some URAHP transcripts are classified as long non-coding RNAs (lncRNAs), URAD and ALLC produce protein-coding transcripts. Given the presence of these transcripts in various tissues, we hypothesized that they may play a role in the regulation of purine catabolism and the pathogenesis of diseases associated with hyperuricemia. Here, we specifically investigate the unique aspects of purine catabolism in H. sapiens, the effects mutations of the uricase gene, and the potential regulatory role of the corresponding transcripts. These findings open new avenues for research and therapeutic approaches for the treatment of hyperuricemia and related diseases.

20.
Chem Pharm Bull (Tokyo) ; 61(5): 524-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23649195

RESUMO

This study describes the synthetic route and molecular computational docking of LQFM 021, as well as examines its biological effects and toxicity. The docking studies revealed strong interaction of LQFM 021 to phosphodiesterase-3 (PDE-3). In isolated arteries, the presence of endothelium potentiates the relaxation for LQFM 021 and the inhibition cyclic nucleotides reduced the relaxation. Pre-contraction with KCl (45 mM), the treatment with tetraethylammonium (TEA) (5 mM) and inhibition of reticular Ca(2+)-ATPase showed an inhibitory effect on relaxation. Moreover, the compound reduced the contraction evoked by the Ca(2+) influx. Acute toxicity tests revealed that the compound was practically nontoxic. In conclusion, this study showed that a new synthetic derivative of pyrazole is a possible PDE-3 inhibitor and has vasorelaxant activity and low toxicity.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Inibidores Enzimáticos/farmacologia , Nucleotídeos Cíclicos/antagonistas & inibidores , Pirazóis/farmacologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Tetrazóis/farmacologia , Células 3T3 , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Nucleotídeos Cíclicos/metabolismo , Pirazóis/síntese química , Pirazóis/química , Ratos , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA