Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 25(5): e14295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38335253

RESUMO

PURPOSE/OBJECTIVE: Field size limitations on Halcyon and Ethos treatment machines largely preclude use of the conventional monoisocentric three-field technique for breast/chest wall and regional lymph nodes. We present an alternative, IMRT-based planning approach that facilitates treatment on Halcyon and Ethos while preserving plan quality. MATERIALS/METHODS: Eight breast and regional node cases (four left-sided, four right-sided) were planned for an Ethos machine using a 15-17 field IMRT technique. Institutional plan quality metrics for CTV and PTV coverage and OAR sparing were assessed. Five plans (four right-sided, one left-sided) were also planned using a hybrid 3D multisocenter technique. CTV coverage and OAR sparing were compared to the IMRT plans. Eclipse scripting tools were developed to aid in beam placement and plan evaluation through a set of dosimetric scorecards, and both are shared publicly. RESULTS: On average, the IMRT plans achieved breast CTV and PTV coverage at 50 Gy of 97.9% and 95.7%, respectively. Supraclavicular CTV and PTV coverages at 45 Gy were 100% and 95.5%. Axillary lymph node CTV and PTV coverages at 45 Gy were 100% and 97.1%, and IMN CTV coverage at 45 Gy was 99.2%. Mean ipsilateral lung V20 Gy was 19.3%, and average mean heart dose was 1.6 Gy for right-sided cases and 3.0 Gy for left-sided. In comparison to the hybrid 3D plans, IMRT plans achieved higher breast and supraclavicular CTV coverage (99.9% vs. 98.6% and 99.9% vs. 93.4%), higher IMN coverage (99.6% vs. 78.2%), and lower ipsilateral lung V20 Gy (19.6% vs. 28.2%). CONCLUSION: Institutional plan quality benchmarks were achieved for all eight cases using the IMRT-based planning approach. The IMRT-based planning approach offered superior conformity and OAR sparing than a competing hybrid 3D approach.


Assuntos
Neoplasias da Mama , Linfonodos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Parede Torácica , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Feminino , Parede Torácica/efeitos da radiação , Órgãos em Risco/efeitos da radiação , Neoplasias da Mama/radioterapia , Linfonodos/efeitos da radiação
2.
Adv Radiat Oncol ; 9(2): 101326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405314

RESUMO

Purpose: The autosegmentation algorithm of Siemens Healthineers version VA 30 (AASH) (Siemens Healthineers, Erlangen, Germany) was trained and developed in the male pelvis, with no published data on its usability in the female pelvis. This is the first multi-institutional study to describe and evaluate an artificial intelligence algorithm for autosegmentation of the pelvic nodal region by gender. Methods and Materials: We retrospectively evaluated AASH pelvic nodal autosegmentation in both male and female patients treated at our network of institutions. The automated pelvic nodal contours generated by AASH were evaluated by 1 board-certified radiation oncologist. A 4-point scale was used for each nodal region contour: a score of 4 is clinically usable with minimal edits; a score of 3 requires minor edits (missing nodal contour region, cutting through vessels, or including bowel loops) in 3 or fewer computed tomography slices; a score of 2 requires major edits, as previously defined but in 4 or more computed tomography slices; and a score of 1 requires complete recontouring of the region. Pelvic nodal regions included the right and left side of the common iliac, external iliac, internal iliac, obturator, and midline presacral nodes. In addition, patients were graded based on their lowest nodal contour score. Statistical analysis was performed using Fisher exact tests and Yates-corrected χ2 tests. Results: Fifty-two female and 51 male patients were included in the study, representing a total of 468 and 447 pelvic nodal regions, respectively. Ninety-six percent and 99% of contours required minor edits at most (score of 3 or 4) for female and male patients, respectively (P = .004 using Fisher exact test; P = .007 using Yates correction). No nodal regions had a statistically significant difference in scores between female and male patients. The percentage of patients requiring no more than minor edits was 87% (45 patients) and 92% (47 patients) for female and male patients, respectively (P = .53 using Fisher exact test; P = .55 using Yates correction). Conclusions: AASH pelvic nodal autosegmentation performed very well in both male and female pelvic nodal regions, although with better male pelvic nodal autosegmentation. As autosegmentation becomes more widespread, it may be important to have equal representation from all sexes in training and validation of autosegmentation algorithms.

3.
Radiat Oncol ; 18(1): 144, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660057

RESUMO

Adaptive radiotherapy (ART) was introduced in the late 1990s to improve the accuracy and efficiency of therapy and minimize radiation-induced toxicities. ART combines multiple tools for imaging, assessing the need for adaptation, treatment planning, quality assurance, and has been utilized to monitor inter- or intra-fraction anatomical variations of the target and organs-at-risk (OARs). Ethos™ (Varian Medical Systems, Palo Alto, CA), a cone beam computed tomography (CBCT) based radiotherapy treatment system that uses artificial intelligence (AI) and machine learning to perform ART, was introduced in 2020. Since then, numerous studies have been done to examine the potential benefits of Ethos™ CBCT-guided ART compared to non-adaptive radiotherapy. This review will explore the current trends of Ethos™, including improved CBCT image quality, a feasible clinical workflow, daily automated contouring and treatment planning, and motion management. Nevertheless, evidence of clinical improvements with the use of Ethos™ are limited and is currently under investigation via clinical trials.


Assuntos
Lesões por Radiação , Radioterapia (Especialidade) , Humanos , Inteligência Artificial , Tomografia Computadorizada de Feixe Cônico , Aprendizado de Máquina , Movimento (Física)
4.
Adv Radiat Oncol ; 8(6): 101295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457822

RESUMO

Purpose: A scoring mechanism called the scorecard that objectively quantifies the dosimetric plan quality of pancreas stereotactic body radiation therapy treatment plans is introduced. Methods and Materials: A retrospective analysis of patients with pancreatic ductal adenocarcinoma receiving stereotactic body radiation therapy at our institution between November 2019 and November 2020 was performed. Ten patients were identified. All patients were treated to 36 Gy in 5 fractions, and organs at risk (OARs) were constrained based on Alliance A021501. The scorecard awarded points for OAR doses lower than those cited in Alliance A021501. A team of 3 treatment planners and 2 radiation oncologists, including a physician resident without plan optimization experience, discussed the relative importance of the goals of the treatment plan and added additional metrics for OARs and plan quality indexes to create a more rigorous scoring mechanism. The scorecard for this study consisted of 42 metrics, each with a unique piecewise linear scoring function which is summed to calculate the total score (maximum possible score of 365). The scorecard-guided plan, the planning and optimization for which were done exclusively by the physician resident with no prior plan optimization experience, was compared with the clinical plan, the planning and optimization for which were done by expert dosimetrists, using the Sign test. Results: Scorecard-guided plans had, on average, higher total scores than those clinically delivered for each patient, averaging 280.1 for plans clinically delivered and 311.7 for plans made using the scorecard (P = .003). Additionally, for most metrics, the average score of each metric across all 10 patients was higher for scorecard-guided plans than for clinically delivered plans. The scorecard guided the planner toward higher coverage, conformality, and OAR sparing. Conclusions: A scorecard tool can help clarify the goals of a treatment plan and provide an objective method for comparing the results of different plans. Our study suggests that a completely novice treatment planner can use a scorecard to create treatment plans with enhanced coverage, conformality, and improved OAR sparing, which may have significant effects on both tumor control and toxicity. These tools, including the scorecard used in this study, have been made freely available.

5.
Med Dosim ; 47(3): 258-263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35513996

RESUMO

Whole-brain radiotherapy has been the standard palliative treatment for patients with brain metastases due to its effectiveness, availability, and ease of administration. Recent clinical trials have shown that limiting radiation dose to the hippocampus is associated with decreased cognitive toxicity. In this study, we updated an existing Knowledge Based Planning model to further reduce dose to the hippocampus and improve other dosimetric plan quality characteristics. Forty-two clinical cases were contoured according to guidelines. A new dosimetric scorecard was created as an objective measure for plan quality. The new Hippocampal Sparing Whole Brain Version 2 (HSWBv2) model adopted a complex recursive training process and was validated with five additional cases. HSWBv2 treatment plans were generated on the Varian HalcyonTM and TrueBeamTM systems and compared against plans generated from the existing (HSWBv1) model released in 2016. On the HalcyonTM platform, 42 cases were re-planned. Hippocampal D100% from HSWBv2 and HSWBv1 models had an average dose of 5.75 Gy and 6.46 Gy, respectively (p < 0.001). HSWBv2 model also achieved a hippocampal Dmean of 7.49 Gy, vs 8.10 Gy in HSWBv1 model (p < 0.001). Hippocampal D0.03CC from HSWBv2 model was 9.86 Gy, in contrast to 10.57 Gy in HSWBv1 (p < 0.001). For PTV_3000, D98% and D2% from HSWBv2 model were 28.27 Gy and 31.81 Gy, respectively, compared to 28.08 Gy (p = 0.020) and 32.66 Gy from HSWBv1 (p < 0.001). Among several other dosimetric quality improvements, there was a significant reduction in PTV_3000 V105% from 35.35% (HSWBv1) to 6.44% (HSWBv2) (p < 0.001). On 5 additional validation cases, dosimetric improvements were also observed on TrueBeamTM. In comparison to published data, the HSWBv2 model achieved higher quality hippocampal avoidance whole brain radiation therapy treatment plans through further reductions in hippocampal dose while improving target coverage and dose conformity/homogeneity. HSWBv2 model is shared publicly.


Assuntos
Neoplasias Encefálicas , Radioterapia de Intensidade Modulada , Encéfalo , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Hipocampo , Humanos , Tratamentos com Preservação do Órgão , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA