Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 21(1): 480-495, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452101

RESUMO

Dinitrogen (N2 ) fixing bacteria (diazotrophs) are an important source of new nitrogen in oligotrophic environments and represent stable members of the microbiome in tropical corals, while information on corals from temperate oligotrophic regions is lacking. Therefore, this study provides new insights into the diversity and activity of diazotrophs associated with the temperate coral Oculina patagonica from the Mediterranean Sea by combining metabarcoding sequencing of amplicons of both the 16S rRNA and nifH genes and 15 N2 stable isotope tracer analysis to assess diazotroph-derived nitrogen (DDN) assimilation by the coral. Results show that the diazotrophic community of O. patagonica is dominated by autotrophic bacteria (i.e. Cyanobacteria and Chlorobia). The majority of DDN was assimilated into the tissue and skeletal matrix, and DDN assimilation significantly increased in bleached corals. Thus, diazotrophs may constitute an additional nitrogen source for the coral host, when nutrient exchange with Symbiodinium is disrupted (e.g. bleaching) and external food supply is limited (e.g. oligotrophic summer season). Furthermore, we hypothesize that DDN can facilitate the fast proliferation of endolithic algae, which provide an alternative carbon source for bleached O. patagonica. Overall, O. patagonica could serve as a good model for investigating the importance of diazotrophs in coral recovery from bleaching.


Assuntos
Antozoários/metabolismo , Chlorobi/metabolismo , Cianobactérias/metabolismo , Dinoflagellida/metabolismo , Fixação de Nitrogênio/fisiologia , Animais , Antozoários/microbiologia , Antozoários/parasitologia , Chlorobi/genética , Cianobactérias/genética , Dinoflagellida/genética , Mar Mediterrâneo , Nitrogênio/metabolismo , Oxirredutases/genética , RNA Ribossômico 16S/genética , Estações do Ano
2.
Proc Biol Sci ; 282(1812): 20150610, 2015 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-26203006

RESUMO

Anthropogenic nutrient enrichment affects the biogeochemical cycles and nutrient stoichiometry of coastal ecosystems and is often associated with coral reef decline. However, the mechanisms by which dissolved inorganic nutrients, and especially nitrogen forms (ammonium versus nitrate) can disturb the association between corals and their symbiotic algae are subject to controversial debate. Here, we investigated the coral response to varying N : P ratios, with nitrate or ammonium as a nitrogen source. We showed significant differences in the carbon acquisition by the symbionts and its allocation within the symbiosis according to nutrient abundance, type and stoichiometry. In particular, under low phosphate concentration (0.05 µM), a 3 µM nitrate enrichment induced a significant decrease in carbon fixation rate and low values of carbon translocation, compared with control conditions (N : P = 0.5 : 0.05), while these processes were significantly enhanced when nitrate was replaced by ammonium. A combined enrichment in ammonium and phosphorus (N : P = 3 : 1) induced a shift in nutrient allocation to the symbionts, at the detriment of the host. Altogether, these results shed light into the effect of nutrient enrichment on reef corals. More broadly, they improve our understanding of the consequences of nutrient loading on reef ecosystems, which is urgently required to refine risk management strategies.


Assuntos
Antozoários/microbiologia , Antozoários/fisiologia , Carbono/metabolismo , Dinoflagellida/fisiologia , Nitrogênio/metabolismo , Simbiose , Compostos de Amônio/metabolismo , Animais , Nitratos/metabolismo , Fósforo/metabolismo , Fotossíntese
3.
J Exp Biol ; 218(Pt 8): 1223-34, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25722004

RESUMO

Reef-building corals form symbioses with dinoflagellates from the diverse genus Symbiodinium. This symbiotic association has developed adaptations to acquire and share nutrients, which are essential for its survival and growth in nutrient-poor tropical waters. The host is thus able to prey on a wide range of organic food sources (heterotrophic nutrition) whereas the symbionts acquire most of the inorganic nutrients (autotrophic nutrition). However, nutrient fluxes between the two partners remain unclear, especially concerning heterotrophically acquired carbon and nitrogen. We combined physiological measurements and pulse-chase isotopic labeling of heterotrophic carbon and nitrogen, as well as autotrophic carbon to track nutrient fluxes in two coral species, Stylophora pistillata and Turbinaria reniformis, in symbiosis with Symbiodinium clades A, and C,D respectively. We showed a rapid acquisition, exchange and a long-term retention of heterotrophic nutrients within the symbiosis, whereas autotrophic nutrients were rapidly used to meet immediate metabolic needs. In addition, there was a higher retention of heterotrophic nitrogen compared with carbon, in agreement with the idea that tropical corals are nitrogen-limited. Finally, a coupling between auto- and heterotrophy was observed in the species S. pistillata, with a higher acquisition and retention of heterotrophic nutrients under low irradiance to compensate for a 50% reduction in autotrophic nutrient acquisition and translocation. Conversely, T. reniformis conserved an equivalent heterotrophic nutrient acquisition at both light levels because this coral species did not significantly reduce its rates of gross photosynthesis and autotrophic carbon acquisition between the two irradiances. These experiments advance the current understanding of the nutrient exchanges between the two partners of a symbiotic association, providing evidence of the complexity of the host-symbiont relationship.


Assuntos
Antozoários/metabolismo , Carbono/metabolismo , Dinoflagellida/metabolismo , Nitrogênio/metabolismo , Simbiose , Animais , Processos Autotróficos , Isótopos de Carbono , Processos Heterotróficos , Luz , Isótopos de Nitrogênio , Fotossíntese , Especificidade da Espécie
4.
J Exp Biol ; 217(Pt 22): 3962-3, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25278474

RESUMO

Scleractinian corals are essential constituents of tropical reef ecological diversity. They live in close association with diazotrophs [dinitrogen (N2)-fixing microbes], which can fix high rates of N2. Whether corals benefit from this extrinsic nitrogen source is still under debate. Until now, N2 fixation rates have been indirectly estimated using the acetylene reduction assay, which does not permit assessment of the amount of nitrogen incorporated into the different compartments of the coral holobiont. In the present study, the (15)N2 technique was applied for the first time on three Red Sea coral species. Significant (15)N enrichment was measured in particles released by corals to the surrounding seawater. N2 fixation rates were species specific and as high as 1.6-2 ng N day(-1) l(-1). However, no significant enrichment was measured in the symbiotic dinoflagellates or the coral host tissues, suggesting that corals do not benefit from diazotrophic N2 fixation.


Assuntos
Antozoários/microbiologia , Dinoflagellida/metabolismo , Fixação de Nitrogênio , Nitrogênio/análise , Água do Mar/química , Animais , Antozoários/fisiologia , Oceano Índico , Muco , Isótopos de Nitrogênio , Simbiose
5.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992179

RESUMO

Dinitrogen (N2) fixation represents a key source of reactive nitrogen in marine ecosystems. While the process has been rather well-explored in low latitudes of the Atlantic and Pacific Oceans, other higher latitude regions and particularly the Indian Ocean have been chronically overlooked. Here, we characterize N2 fixation and diazotroph community composition across nutrient and trace metals gradients spanning the multifrontal system separating the oligotrophic waters of the Indian Ocean subtropical gyre from the high nutrient low chlorophyll waters of the Southern Ocean. We found a sharp contrasting distribution of diazotroph groups across the frontal system. Notably, cyanobacterial diazotrophs dominated north of fronts, driving high N2 fixation rates (up to 13.96 nmol N l-1 d-1) with notable peaks near the South African coast. South of the fronts non-cyanobacterial diazotrophs prevailed without significant N2 fixation activity being detected. Our results provide new crucial insights into high latitude diazotrophy in the Indian Ocean, which should contribute to improved climate model parameterization and enhanced constraints on global net primary productivity projections.


Assuntos
Cianobactérias , Fixação de Nitrogênio , Água do Mar , Oceano Índico , Água do Mar/microbiologia , Cianobactérias/genética , Cianobactérias/metabolismo , Ecossistema
6.
J Exp Biol ; 215(Pt 8): 1384-93, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22442377

RESUMO

Corals live in symbiosis with dinoflagellates of the genus Symbiodinum. These dinoflagellates translocate a large part of the photosynthetically fixed carbon to the host, which in turn uses it for its own needs. Assessing the carbon budget in coral tissue is a central question in reef studies that still vexes ecophysiologists. The amount of carbon fixed by the symbiotic association can be determined by measuring the rate of photosynthesis, but the amount of carbon translocated by the symbionts to the host and the fate of this carbon are more difficult to assess. In the present study, we propose a novel approach to calculate the budget of autotrophic carbon in the tissue of scleractinian corals, based on a new model and measurements made with the stable isotope (13)C. Colonies of the scleractinian coral Stylophora pistillata were incubated in H(13)CO (-)(3)-enriched seawater, after which the fate of (13)C was followed in the symbionts, the coral tissue and the released particulate organic carbon (i.e. mucus). Results obtained showed that after 15 min, ca. 60% of the carbon fixed was already translocated to the host, and after 48 h, this value reached 78%. However, ca. 48% of the photosynthetically fixed carbon was respired by the symbiotic association, and 28% was released as dissolved organic carbon. This is different from other coral species, where <1% of the total organic carbon released is from newly fixed carbon. Only 23% of the initially fixed carbon was retained in the symbionts and coral tissue after 48 h. Results show that our (13)C-based model could successfully trace the carbon flow from the symbionts to the host, and the photosynthetically acquired carbon lost from the symbiotic association.


Assuntos
Antozoários/fisiologia , Processos Autotróficos/fisiologia , Carbono/metabolismo , Modelos Biológicos , Fotossíntese/fisiologia , Análise de Variância , Animais , Transporte Biológico , Isótopos de Carbono , Fatores de Tempo
7.
Front Microbiol ; 12: 631244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248863

RESUMO

There is an increasing interest in understanding the structure and function of the microbiota associated with marine and terrestrial organisms, because it can play a major role in host nutrition and resistance to environmental stress. Reef-building corals live in association with diazotrophs, which are microbes able to fix dinitrogen. Corals are known to assimilate diazotrophically-derived nitrogen (DDN), but it is still not clear whether this nitrogen source is derived from coral-associated diazotrophs and whether it substantially contributes to the coral's nitrogen budget. In this study, we aimed to provide a better understanding of the importance of DDN for corals using a holistic approach by simultaneously assessing DDN assimilation rates (using 15N2 tracer technique), the diazotrophic bacterial community (using nifH gene amplicon sequencing) and the natural δ15N signature in Stylophora pistillata corals from the Northern Red Sea along a depth gradient in winter and summer. Overall, our results show a discrepancy between the three parameters. DDN was assimilated by the coral holobiont during winter only, with an increased assimilation with depth. Assimilation rates were, however, not linked to the presence of coral-associated diazotrophs, suggesting that the presence of nifH genes does not necessarily imply functionality. It also suggests that DDN assimilation was independent from coral-associated diazotrophs and may instead result from nitrogen derived from planktonic diazotrophs. In addition, the δ15N signature presented negative values in almost all coral samples in both seasons, suggesting that nitrogen sources other than DDN contribute to the nitrogen budget of corals from this region. This study yields novel insight into the origin and importance of diazotrophy for scleractinian corals from the Northern Red Sea using multiple proxies.

8.
Front Microbiol ; 10: 1860, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474958

RESUMO

Corals are associated with dinitrogen (N2)-fixing bacteria that potentially represent an additional nitrogen (N) source for the coral holobiont in oligotrophic reef environments. Nevertheless, the few studies investigating the assimilation of diazotrophically derived nitrogen (DDN) by tropical corals are limited to a single scleractinian species (i.e., Stylophora pistillata). The present study quantified DDN assimilation rates in four scleractinian and three soft coral species from the shallow waters of the oligotrophic Northern Red Sea using the 15N2 tracer technique. All scleractinian species significantly stimulated N2 fixation in the coral-surrounding seawater (and mucus) and assimilated DDN into their tissue. Interestingly, N2 fixation was not detected in the tissue and surrounding seawater of soft corals, despite the fact that soft corals were able to take up DDN from a culture of free-living diazotrophs. Soft coral mucus likely represents an unfavorable habitat for the colonization and activity of diazotrophs as it contains a low amount of particulate organic matter, with a relatively high N content, compared to the mucus of scleractinian corals. In addition, it is known to present antimicrobial properties. Overall, this study suggests that DDN assimilation into coral tissues depends on the presence of active diazotrophs in the coral's mucus layer and/or surrounding seawater. Since N is often a limiting nutrient for primary productivity in oligotrophic reef waters, the divergent capacity of scleractinian and soft corals to promote N2 fixation may have implications for N availability and reef biogeochemistry in scleractinian versus soft coral-dominated reefs.

9.
ISME J ; 13(3): 651-662, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30323264

RESUMO

Nitrogen (N) is a limiting nutrient in vast regions of the world's oceans, yet the sources of N available to various phytoplankton groups remain poorly understood. In this study, we investigated inorganic carbon (C) fixation rates and nitrate (NO3-), ammonium (NH4+) and urea uptake rates at the single cell level in photosynthetic pico-eukaryotes (PPE) and the cyanobacteria Prochlorococcus and Synechococcus. To that end, we used dual 15N and 13C-labeled incubation assays coupled to flow cytometry cell sorting and nanoSIMS analysis on samples collected in the North Pacific Subtropical Gyre (NPSG) and in the California Current System (CCS). Based on these analyses, we found that photosynthetic growth rates (based on C fixation) of PPE were higher in the CCS than in the NSPG, while the opposite was observed for Prochlorococcus. Reduced forms of N (NH4+ and urea) accounted for the majority of N acquisition for all the groups studied. NO3- represented a reduced fraction of total N uptake in all groups but was higher in PPE (17.4 ± 11.2% on average) than in Prochlorococcus and Synechococcus (4.5 ± 6.5 and 2.9 ± 2.1% on average, respectively). This may in part explain the contrasting biogeography of these picoplankton groups. Moreover, single cell analyses reveal that cell-to-cell heterogeneity within picoplankton groups was significantly greater for NO3- uptake than for C fixation and NH4+ uptake. We hypothesize that cellular heterogeneity in NO3- uptake within groups facilitates adaptation to the fluctuating availability of NO3- in the environment.


Assuntos
Nitrogênio/metabolismo , Fitoplâncton/metabolismo , Prochlorococcus/metabolismo , Espectrometria de Massa de Íon Secundário/métodos , Synechococcus/metabolismo , Compostos de Amônio/metabolismo , California , Carbono/metabolismo , Ciclo do Carbono , Citometria de Fluxo , Nitratos/metabolismo , Oceano Pacífico , Fotossíntese , Fitoplâncton/crescimento & desenvolvimento , Prochlorococcus/crescimento & desenvolvimento , Análise de Célula Única , Synechococcus/crescimento & desenvolvimento , Ureia/metabolismo
10.
mBio ; 8(1)2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28074021

RESUMO

Tropical corals are associated with a diverse community of dinitrogen (N2)-fixing prokaryotes (diazotrophs) providing the coral an additional source of bioavailable nitrogen (N) in oligotrophic waters. The overall activity of these diazotrophs changes depending on the current environmental conditions, but to what extent it affects the assimilation of diazotroph-derived N (DDN) by corals is still unknown. Here, in a series of 15N2 tracer experiments, we directly quantified DDN assimilation by scleractinian corals from the Red Sea exposed to different environmental conditions. We show that DDN assimilation strongly varied with the corals' metabolic status or with phosphate availability in the water. The very autotrophic shallow-water (~5 m) corals showed low or no DDN assimilation, which significantly increased under elevated phosphate availability (3 µM). Corals that depended more on heterotrophy (i.e., bleached and deep-water [~45 m] corals) assimilated significantly more DDN, which contributed up to 15% of the corals' N demand (compared to 1% in shallow corals). Furthermore, we demonstrate that a substantial part of the DDN assimilated by deep corals was likely obtained from heterotrophic feeding on fixed N compounds and/or diazotrophic cells in the mucus. Conversely, in shallow corals, the net release of mucus, rich in organic carbon compounds, likely enhanced diazotroph abundance and activity and thereby the release of fixed N to the pelagic and benthic reef community. Overall, our results suggest that DDN assimilation by corals varies according to the environmental conditions and is likely linked to the capacity of the coral to acquire nutrients from seawater. IMPORTANCE: Tropical corals are associated with specialized bacteria (i.e., diazotrophs) able to transform dinitrogen (N2) gas into a bioavailable form of nitrogen, but how much of this diazotroph-derived nitrogen (DDN) is assimilated by corals under different environmental conditions is still unknown. Here, we used 15N2 labeling to trace the fate of DDN within the coral symbiosis. We show that DDN is assimilated by both the animal host and the endosymbiotic algae. In addition, the amount of assimilated DDN was significantly greater in mesophotic, bleached, or phosphorus-enriched corals than in surface corals, which almost did not take up this nitrogen form. DDN can thus be of particular importance for the nutrient budget of corals whenever they are limited by the availability of other forms of dissolved nutrients.


Assuntos
Antozoários/metabolismo , Antozoários/microbiologia , Fixação de Nitrogênio , Nitrogênio/metabolismo , Células Procarióticas/metabolismo , Animais , Marcação por Isótopo , Fosfatos/análise , Água do Mar/química
11.
Sci Rep ; 6: 31768, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27531136

RESUMO

During the 20(th) century, seawater temperatures have significantly increased, leading to profound alterations in biogeochemical cycles and ecosystem processes. Elevated temperatures have also caused massive bleaching (symbiont/pigment loss) of autotrophic symbioses, such as in coral-dinoflagellate association. As symbionts provide most nutrients to the host, their expulsion during bleaching induces host starvation. However, with the exception of carbon, the nutritional impact of bleaching on corals is still unknown, due to the poorly understood requirements in inorganic nutrients during stress. We therefore assessed the uptake rates of nitrogen and phosphate by five coral species maintained under normal and thermal stress conditions. Our results showed that nitrogen acquisition rates were significantly reduced during thermal stress, while phosphorus uptake rates were significantly increased in most species, suggesting a key role of this nutrient. Additional experiments showed that during thermal stress, phosphorus was required to maintain symbiont density and photosynthetic rates, as well as to enhance the translocation and retention of carbon within the host tissue. These findings shed new light on the interactions existing between corals and inorganic nutrients during thermal stress, and highlight the importance of phosphorus for symbiont health.


Assuntos
Antozoários/crescimento & desenvolvimento , Recifes de Corais , Aquecimento Global , Fósforo/metabolismo , Clima Tropical , Animais , Oceanos e Mares
12.
Sci Rep ; 6: 38112, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27917888

RESUMO

Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals' vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.


Assuntos
Antozoários/fisiologia , Resposta ao Choque Térmico/fisiologia , Processos Heterotróficos/fisiologia , Fotossíntese/fisiologia , Animais , Antozoários/metabolismo , Antozoários/parasitologia , Processos Autotróficos/fisiologia , Calcificação Fisiológica/fisiologia , Carbono/metabolismo , Mudança Climática , Dinoflagellida/fisiologia , Temperatura Alta , Luz , Simbiose/fisiologia
14.
PLoS One ; 7(9): e44672, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970284

RESUMO

Temperate symbiotic corals, such as the Mediterranean species Cladocora caespitosa, live in seasonally changing environments, where irradiance can be ten times higher in summer than winter. These corals shift from autotrophy in summer to heterotrophy in winter in response to light limitation of the symbiont's photosynthesis. In this study, we determined the autotrophic carbon budget under different conditions of irradiance (20 and 120 µmol photons m(-2) s(-1)) and feeding (fed three times a week with Artemia salina nauplii, and unfed). Corals were incubated in H(13)CO(3) (-)-enriched seawater, and the fate of (13)C was followed in the symbionts and the host tissue. The total amount of carbon fixed by photosynthesis and translocated was significantly higher at high than low irradiance (ca. 13 versus 2.5-4.5 µg cm(-2) h(-1)), because the rates of photosynthesis and carbon fixation were also higher. However, the percent of carbon translocation was similar under the two irradiances, and reached more than 70% of the total fixed carbon. Host feeding induced a decrease in the percentage of carbon translocated under low irradiance (from 70 to 53%), and also a decrease in the rates of carbon translocation per symbiont cell under both irradiances. The fate of autotrophic and heterotrophic carbon differed according to irradiance. At low irradiance, autotrophic carbon was mostly respired by the host and the symbionts, and heterotrophic feeding led to an increase in host biomass. Under high irradiance, autotrophic carbon was both respired and released as particulate and dissolved organic carbon, and heterotrophic feeding led to an increase in host biomass and symbiont concentration. Overall, the maintenance of high symbiont concentration and high percentage of carbon translocation under low irradiance allow this coral species to optimize its autotrophic carbon acquisition, when irradiance conditions are not favourable to photosynthesis.


Assuntos
Antozoários/metabolismo , Carbono/metabolismo , Luz , Animais , Antozoários/fisiologia , Transporte Biológico , Fotossíntese
15.
J Exp Biol ; 211(Pt 6): 860-5, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18310111

RESUMO

This study was designed to assess the importance of dissolved free amino acids (DFAA) as a nitrogen source for the scleractinian coral Stylophora pistillata. For this purpose, experiments were performed using (15)N-enriched DFAAs, and %(15)N enrichment was measured both in animal tissue and zooxanthellae at different DFAA concentrations, incubation time and light levels. As previously observed for urea, which is another source of organic nitrogen, DFAA uptake exhibited a biphasic mode consisting of an active carrier-mediated transport for concentrations below 3 micromol l(-1) and a linear uptake for higher concentrations. The value of the carrier affinity (K(m)=1.23 micromol l(-1) DFAA) indicated good adaptation of the corals to the low levels of DFAA concentrations measured in most oligotrophic waters. DFAA uptake was also correlated with light. The DFAA contribution to the nitrogen requirements for tissue growth was compared to the contribution of ammonia, nitrate and urea, for which uptake was also measured in S. pistillata. Inorganic sources (NH(4)(+) and NO(3)(-)) contributed 75% of the daily nitrogen needs against 24% for organic sources. Taken altogether, dissolved organic and inorganic nitrogen can supply almost 100% of the nitrogen needs for tissue growth.


Assuntos
Aminoácidos/metabolismo , Antozoários/metabolismo , Animais , Transporte Biológico Ativo , Dinoflagellida/metabolismo , Cinética , Modelos Biológicos , Nitrogênio/metabolismo , Isótopos de Nitrogênio , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA