Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Neurochem ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163875

RESUMO

Resveratrol, a naturally occurring polyphenol that activates sirtuin 1 (SIRT1), has been shown to reduce overall levels of matrix metalloprotease-9 (MMP-9) in cerebrospinal fluid (CSF) samples from patients with Alzheimer's dementia (AD). Depending on the site of release, however, MMP-9 has the potential to improve or impair cognition. In particular, its release from microglia or pericytes proximal to the blood brain barrier can damage the basement membrane, while neuronal activity-dependent release of this protease from glutamatergic neurons can instead promote dendritic spine expansion and long-term potentiation of synaptic plasticity. In the present study, we test the hypothesis that resveratrol reduces overall MMP-9 levels in CSF samples from patients with APOE4, an allele associated with increased glial inflammation. We also examine the possibility that resveratrol reduces inflammation-associated MMP release from cultured glia but spares neuronal activity-dependent release from cultured cortical neurons. We observe that resveratrol decreases overall levels of MMP-2 and MMP-9 in CSF samples from AD patients. Resveratrol also reduces CSF levels of tissue inhibitor of metalloproteinases-1 (TIMP-1), glial-derived protein that restricts long-term potentiation of synaptic transmission, in individuals homozygous for APOE4. Consistent with these results, we observe that resveratrol reduces basal and lipopolysaccharide (LPS)-stimulated MMP and TIMP-1 release from cultured microglia and astrocytes. In contrast, however, resveratrol does not inhibit release of MMP-9 from cortical neurons. Overall, these results are consistent with the possibility that while resveratrol reduces potentially maladaptive MMP and TIMP-1 release from activated glia, neuroplasticity-promoting MMP release from neurons is spared. In contrast, resveratrol reduces release of neurocan and brevican, extracellular matrix components that restrict neuroplasticity, from both neurons and glia. These data underscore the diversity of resveratrol's actions with respect to affected cell types and molecular targets and also suggest that further studies may be warranted to determine if its effects on glial MMP release could make it a useful adjunct for AD- and/or anti-amyloid therapy-related damage to the blood brain barrier.

2.
Eur J Neurosci ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844747

RESUMO

Despite widespread use of combination antiretroviral therapy (cART), there remains a subset of individuals who display cognitive impairment broadly known as HIV-associated neurocognitive disorder (HAND). Interestingly, HIV-infected cells continuously release the HIV-1 protein Tat even in the presence of cART. Persistent exposure to Tat is proposed to increase both neuroinflammation and neurotoxicity. In vitro evidence shows that matrix metalloproteinases (MMPs) are among the neuroinflammatory molecules induced by Tat, which are known to disrupt specialized neuronal extracellular matrix structures called perineuronal nets (PNNs). PNNs predominantly surround parvalbumin interneurons and help to buffer these cells from oxidant stress and to independently increase their excitability. In order to better understand the link between short-term exposure to Tat, neuroinflammation, and PNNs, we explored the direct effects of Tat on glial cells and neurons. Herein, we report that in mixed glial cultures, Tat directly increases the expression of proinflammatory molecules, including MMP-9. Moreover, direct injection of Tat protein into mouse hippocampus increases the expression of astrocyte and microglia markers as well as MMP-9. The number of PNNs is decreased following Tat exposure, followed later by decreased numbers of hippocampal parvalbumin-expressing neurons. In older mice, Tat induced significant increases in the gene expression of proinflammatory molecules including markers of gliosis, MMPs and complement system proteins. Taken together, these data support a direct effect of Tat on glial-derived MMP expression subsequently affecting PNNs and neuronal health, with older mice more susceptible to Tat-induced inflammation.

3.
Glia ; 67(9): 1719-1729, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31124192

RESUMO

The HIV-1 protein Tat is continually released by HIV-infected cells despite effective combination antiretroviral therapies (cART). Tat promotes neurotoxicity through enhanced expression of proinflammatory molecules from resident and infiltrating immune cells. These molecules include matrix metalloproteinases (MMPs), which are pathologically elevated in HIV, and are known to drive central nervous system (CNS) injury in varied disease settings. A subset of MMPs can activate G-protein coupled protease-activated receptor 1 (PAR-1), a receptor that is highly expressed on astrocytes. Although PAR-1 expression is increased in HIV-associated neurocognitive disorder (HAND), its role in HAND pathogenesis remains understudied. Herein, we explored Tat's ability to induce expression of the PAR-1 agonists MMP-3 and MMP-13. We also investigated MMP/PAR-1-mediated release of CCL2, a chemokine that drives CNS entry of HIV infected monocytes and remains a significant correlate of cognitive dysfunction in the era of cART. Tat exposure significantly increased the expression of MMP-3 and MMP-13. These PAR-1 agonists both stimulated the release of astrocytic CCL2, and both genetic knock-out and pharmacological inhibition of PAR-1 reduced CCL2 release. Moreover, in HIV-infected post-mortem brain tissue, within-sample analyses revealed a correlation between levels of PAR-1-activating MMPs, PAR-1, and CCL2. Collectively, these findings identify MMP/PAR-1 signaling to be involved in the release of CCL2, which may underlie Tat-induced neuroinflammation.


Assuntos
Astrócitos/metabolismo , Astrócitos/virologia , Quimiocina CCL2/metabolismo , Metaloproteinases da Matriz/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Adulto , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/virologia , Feminino , HIV-1 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
4.
Eur J Neurosci ; 46(9): 2519-2533, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28921719

RESUMO

Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca2+ ]i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca2+ ]i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, this study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca2+ ]i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2- and dopamine-1-expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist-induced [Ca2+ ]i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Inflamação/metabolismo , Receptores de AMPA/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Cátions Bivalentes/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Feminino , Inflamação/patologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Receptores de AMPA/antagonistas & inibidores , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Técnicas de Cultura de Tecidos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
5.
J Neuroinflammation ; 14(1): 56, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28302163

RESUMO

BACKGROUND: Matrix metalloproteinases (MMPs) are a family of enzymes that are typically released from intracellular stores to act on specific extracellular substrates. MMP expression and activity can be increased in a neuronal activity-dependent manner, and further increased in response to tissue injury. MMP substrates include cell adhesion molecules (CAMs) that are abundantly expressed in the brain and well positioned for membrane proximal cleavage. Importantly, CAM integrity is important to synaptic structure and axon-myelin interactions, and shed ectodomains may themselves influence cellular function. METHODS: In the present study, we have examined proteolysis of N-cadherin (N-cdh) by MMP-7, a family member that has been implicated in disorders including HIV dementia, multiple sclerosis, and major depression. With in vitro digest assays, we tested N-cdh cleavage by increasing concentrations of recombinant enzyme. We also tested MMP-7 for its potential to stimulate N-cdh shedding from cultured neural cells. Since select CAM ectodomains may interact with cell surface receptors that are expressed on microglial cells, we subsequently tested the N-cdh ectodomain for its ability to stimulate activation of this cell type as determined by nuclear translocation of NF-κB, Iba-1 expression, and TNF-α release. RESULTS: We observed that soluble N-cdh increased Iba-1 levels in microglial lysates, and also increased microglial release of the cytokine TNF-α. Effects were associated with increased NF-κB immunoreactivity in microglial nuclei and diminished by an inhibitor of the toll-like receptor adaptor protein, MyD88. CONCLUSIONS: Together, these in vitro results suggest that soluble N-cdh may represent a novel effector of microglial activation, and that disorders with increased MMP levels may stimulate a cycle in which the products of excess proteolysis further exacerbate microglial-mediated tissue injury. Additional in vivo studies are warranted to address this issue.


Assuntos
Caderinas/farmacologia , Metaloproteinases da Matriz/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteína ADAM10/metabolismo , Proteína ADAM10/farmacologia , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Oligopeptídeos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
6.
Neurobiol Dis ; 68: 1-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24746855

RESUMO

The misfolding and aggregation of α-synuclein (aSyn) eventually lead to an accumulation of toxic forms that disturb normal neuronal function and result in cell death. aSyn rich inclusions are seen in Parkinson's disease, dementia with Lewy bodies and other synucleinopathies. Prolyl oligopeptidase (PREP) can accelerate the aggregation process of aSyn and the inhibition of PREP leads to a decreased amount of aggregated aSyn in cell models and in aSyn transgenic mice. In this study, we investigated the effect of 5- and 28-day PREP inhibitor (KYP-2047) treatments on a mouse strain carrying a point mutation in the aSyn coding gene. Following PREP inhibition, we found a decrease in high molecular-weight oligomeric aSyn and a concomitant increase in the amount of the autophagosome marker, LC3BII, suggesting enhanced macroautophagy (autophagy) and aSyn clearance by KYP-2047. Moreover, 28-day treatment with KYP-2047 caused significant increases in striatal dopamine levels. In cell culture, overexpression of PREP reduced the autophagy. Furthermore, the inhibition of PREP normalized the changes on autophagy markers (LC3BII and p62) caused by an autophagy inhibition or aSyn overexpression, and induced the expression of beclin 1, a positive regulator of autophagy. Taken together, our results suggest that PREP inhibition accelerates the clearance of protein aggregates via increased autophagy and thus normalizes the cell functions in vivo and in vitro. Therefore, PREP inhibition may have future potential in the treatment of synucleinopathies.


Assuntos
Autofagia/efeitos dos fármacos , Encefalopatias/genética , Prolina/análogos & derivados , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/uso terapêutico , alfa-Sinucleína/metabolismo , Alanina/genética , Animais , Autofagia/genética , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias/tratamento farmacológico , Linhagem Celular Transformada , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Mutação/genética , Prolina/genética , Prolina/uso terapêutico , Prolil Oligopeptidases , Fatores de Tempo , alfa-Sinucleína/genética
7.
Subcell Biochem ; 65: 389-455, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23225012

RESUMO

Parkinson's disease (PD) is the most common age-related motoric neurodegenerative disease initially described in the 1800's by James Parkinson as the 'Shaking Palsy'. Loss of the neurotransmitter dopamine was recognized as underlying the pathophysiology of the motor dysfunction; subsequently discovery of dopamine replacement therapies brought substantial symptomatic benefit to PD patients. However, these therapies do not fully treat the clinical syndrome nor do they alter the natural history of this disorder motivating clinicians and researchers to further investigate the clinical phenotype, pathophysiology/pathobiology and etiology of this devastating disease. Although the exact cause of sporadic PD remains enigmatic studies of familial and rare toxicant forms of this disorder have laid the foundation for genome wide explorations and environmental studies. The combination of methodical clinical evaluation, systematic pathological studies and detailed genetic analyses have revealed that PD is a multifaceted disorder with a wide-range of clinical symptoms and pathology that include regions outside the dopamine system. One common thread in PD is the presence of intracytoplasmic inclusions that contain the protein, α-synuclein. The presence of toxic aggregated forms of α-synuclein (e.g., amyloid structures) are purported to be a harbinger of subsequent pathology. In fact, PD is both a cerebral amyloid disease and the most common synucleinopathy, that is, diseases that display accumulations of α-synuclein. Here we present our current understanding of PD etiology, pathology, clinical symptoms and therapeutic approaches with an emphasis on misfolded α-synuclein.


Assuntos
Amiloide , Corpos de Lewy , Doença de Parkinson , Deficiências na Proteostase , alfa-Sinucleína , Amiloide/genética , Amiloide/metabolismo , Animais , Dopamina/genética , Dopamina/metabolismo , Humanos , Corpos de Lewy/genética , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Deficiências na Proteostase/fisiopatologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
Cell Rep ; 42(11): 113423, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952151

RESUMO

Microglia are the primary phagocytes in the central nervous system and clear dead cells generated during development or disease. The phagocytic process shapes the microglia phenotype, which affects the local environment. A unique population of microglia resides in the ventricular-subventricular zone (V-SVZ) of neonatal mice, but how they influence the neurogenic niche is not well understood. Here, we demonstrate that phagocytosis contributes to a pro-neurogenic microglial phenotype in the V-SVZ and that these microglia phagocytose apoptotic cells via the engulfment receptor Jedi-1. Deletion of Jedi-1 decreases apoptotic cell clearance, triggering a neuroinflammatory microglia phenotype that resembles dysfunctional microglia in neurodegeneration and aging and that reduces neural precursor proliferation via elevated interleukin-1ß signaling; interleukin-1 receptor inhibition rescues precursor proliferation in vivo. Together, these results reveal a critical role for Jedi-1 in connecting microglial phagocytic activity to the maintenance of a pro-neurogenic phenotype in the developing V-SVZ.


Assuntos
Ventrículos Laterais , Microglia , Animais , Camundongos , Microglia/fisiologia , Fagócitos , Fagocitose/fisiologia , Transdução de Sinais
9.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945622

RESUMO

Microglia are the primary phagocytes in the central nervous system and are responsible for clearing dead cells generated during development or disease. The phagocytic process shapes the phenotype of the microglia, which affects the local environment. A unique population of microglia reside in the ventricular-subventricular zone (V-SVZ) of neonatal mice, but how they influence this neurogenic niche is not well-understood. Here, we demonstrate that phagocytosis creates a pro-neurogenic microglial phenotype in the V-SVZ and that these microglia phagocytose apoptotic cells via the engulfment receptor Jedi-1. Deletion of Jedi-1 decreases apoptotic cell clearance, triggering the development of a neuroinflammatory phenotype, reminiscent of neurodegenerative and-age-associated microglia, that reduces neural precursor proliferation via elevated interleukin (IL)-1ß signaling; inhibition of IL-1 receptor rescues precursor proliferation in vivo. Together, these results reveal a critical role for Jedi-1 in connecting microglial phagocytic activity to a phenotype that promotes neurogenesis in the developing V-SVZ.

10.
J Neurochem ; 118(4): 521-32, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21166806

RESUMO

Methamphetamine (MA) is a highly addictive psychostimulant that, used in excess, may be neurotoxic. Although the mechanisms that underlie its addictive potential are not completely understood, in animal models matrix metalloproteinase (MMP) inhibitors can reduce behavioral correlates of addiction. In addition, evidence from genome-wide association studies suggests that polymorphisms in synaptic cell-adhesion molecules (CAMs), known MMP substrates, are linked to addictive potential in humans. In the present study, we examined the ability of MA to stimulate cleavage of intercellular adhesion molecule-5 (ICAM-5), a synaptic CAM expressed on dendritic spines in the telencephalon. Previous studies have shown that shedding of ICAM-5 is associated with maturation of dendritic spines, and that MMP-dependent shedding occurs with long term potentiation. Herein, we show that MA stimulates ectodomain cleavage of ICAM-5 in vitro, and that this is abrogated by a broad spectrum MMP inhibitor. We also show that an acute dose of MA, administered in vivo, is associated with cleavage of ICAM-5 in murine hippocampus and striatum. This occurs within 6 h and is accompanied by an increase in MMP-9 protein. In related experiments, we examined the potential consequences of ICAM-5 shedding. We demonstrate that the ICAM-5 ectodomain can interact with ß(1) integrins, and that it can stimulate ß(1) integrin-dependent phosphorylation of cofilin, an event that has previously been linked to MMP-dependent spine maturation. Together these data support an emerging appreciation of MMPs as effectors of synaptic plasticity and suggest a mechanism by which MA may influence the same.


Assuntos
Moléculas de Adesão Celular/metabolismo , Estimulantes do Sistema Nervoso Central/toxicidade , Metanfetamina/toxicidade , Proteínas do Tecido Nervoso/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Densitometria , Dipeptídeos/farmacologia , Ensaio de Imunoadsorção Enzimática , Feminino , Imuno-Histoquímica , Imunoprecipitação , Integrina beta1/biossíntese , Masculino , Inibidores de Metaloproteinases de Matriz , Metaloproteinases da Matriz/biossíntese , Mesencéfalo/citologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Inibidores de Proteases/farmacologia , Ratos , Coluna Vertebral/crescimento & desenvolvimento , Coluna Vertebral/metabolismo , Transfecção
11.
Environ Toxicol Pharmacol ; 84: 103608, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33556584

RESUMO

Exposure to environmental toxicants is linked to long-term adverse outcomes in the brain and involves the dysfunction of glial and neuronal cells. Astrocytes, the most numerous cell type, are increasingly implicated in the pathogenesis of many diseases of the central nervous system, including neurodegenerative diseases. Astrocytes are critical for proper brain function in part due to their robust antioxidant and unique metabolic capabilities. Additionally, astrocytes are positioned both at the blood-brain barrier, where they are the primary responders to xenobiotic penetrance of the CNS, and at synapses where they are in close contact with neurons and synaptic machinery. While exposure to several classes of environmental toxicants, including chlorinated and fluorinated compounds, and trace metals, have been implicated in neurodegenerative diseases, their impact on astrocytes represents an important and growing field of research. Here, we review existing literature focused on the impact of a range of synthetic compounds on astrocytic function. We focus specifically on perturbed metabolic processes in response to these compounds and consider how perturbation of these pathways impacts disease pathogenesis.


Assuntos
Astrócitos/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Animais , Astrócitos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos
12.
Neurotoxicology ; 86: 59-68, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34265337

RESUMO

Exposure to environmental toxicants is prevalent, hazardous and linked to varied detrimental health outcomes and disease. Polychlorinated biphenyls (PCBs), a class of hazardous organic chlorines once widely used for industrial purposes, are associated with neurodegenerative disease and oxidative stress in both in vitro and in vivo models. Here, we investigated the impact of Aroclor 1254, a commercially available PCB mixture, on primary murine astrocytes to determine the response to this once ubiquitously used toxicant on the most numerous cells of the central nervous system (CNS). Astrocytes are a critical component of homeostasis throughout the CNS, including at the blood-brain barrier, where they serve as the primary defense against xenobiotics entering the CNS, and at the synapse, where they are closely coupled to neurons through several metabolic pathways. We hypothesized that PCBs cause astrocytic oxidative stress and related dysfunction including altered metabolism. We exposed primary murine cortical astrocytes to PCBs and report an increased expression of antioxidant genes (Prdx1, Gsta2, Gfap, Amigo2) in response to oxidative stress. Our data show increased ATP production and spare respiratory capacity in astrocytes exposed to 10 µM (∼ 3 ppm) PCBs. This dose also causes an increase in glucose uptake that is not seen at a higher dose (50 µM) suggesting that, at a lower dose, astrocytes are able to engage compensatory mechanisms to promote survival. Together, these data suggest that exposure to PCBs impact astrocytic metabolism, which is important to consider both in the context of human health and disease and in in vitro and in vivo disease models.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Poluentes Ambientais/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia
13.
Cells ; 10(11)2021 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34831478

RESUMO

One of the main pathological features of Parkinson's disease (PD) is a diffuse accumulation of alpha-synuclein (aS) aggregates in neurons. The NEDD4 E3 Ub ligase promotes aS degradation by the endosomal-lysosomal route. Interestingly, NEDD4, as well as being a small molecule able to trigger its functions, is protective against human aS toxicity in evolutionary distant models. While pharmacological activation of E3 enzymes is not easy to achieve, their flexibility and the lack of "consensus" motifs for Ub-conjugation allow the development of engineered Ub-ligases, able to target proteins of interest. We developed lentiviral vectors, encoding well-characterized anti-human aS scFvs fused in frame to the NEDD4 catalytic domain (ubiquibodies), in order to target ubiquitinate aS. We demonstrate that, while all generated ubiquibodies bind to and ubiquitinate aS, the one directed against the non-amyloid component (NAC) of aS (Nac32HECT) affects aS's intracellular levels. Furthermore, Nac32HECT expression partially rescues aS's overexpression or mutation toxicity in neural stem cells. Overall, our data suggest that ubiquibodies, and Nac32HECT in particular, represent a valid platform for interfering with the effects of aS's accumulation and aggregation in neurons.


Assuntos
Vetores Genéticos/metabolismo , Lentivirus/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/metabolismo , Animais , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/metabolismo , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo , Doença de Parkinson/patologia , Ubiquitinação
14.
Eur J Neurosci ; 32(1): 10-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20550572

RESUMO

alpha-Synuclein has been linked to the pathogenesis of Parkinson's disease and other synucleinopathies through its propensity to form toxic oligomers. The exact mechanism for oligomeric synuclein-directed cell vulnerability has not been fully elucidated, but one hypothesis portends the formation of synuclein-containing pores within cell membranes leading to leak channel-mediated calcium influx and subsequent cell death. Here we demonstrate synuclein-induced formation of sodium dodecyl sulfate-stable oligomers, intracellular synuclein-positive aggregates, alterations in membrane conductance reminiscent of leak channels and subsequent cytotoxicity in a dopaminergic-like cell line. Furthermore we demonstrate that the synuclein-induced membrane conductance changes are blocked by direct extracellular application of an anti-synuclein antibody. The work presented here confirms that synuclein overexpression leads to membrane conductance changes and demonstrates for the first time through antibody-blocking studies that synuclein plays a direct role in the formation of leak channels.


Assuntos
Morte Celular/fisiologia , Membrana Celular/metabolismo , Neurônios/metabolismo , Multimerização Proteica , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animais , Linhagem Celular , Membrana Celular/química , Dopamina/metabolismo , Condutividade Elétrica , Humanos , Camundongos , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/metabolismo , alfa-Sinucleína/genética
15.
J Neural Transm (Vienna) ; 117(8): 1019-25, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20549523

RESUMO

One common feature of neurodegenerative diseases is neuroinflammation. In the case of Parkinson's disease (PD), neuroinflammation appears early and persists throughout the disease course. The principal cellular mediator of brain inflammation is the resident microglia which share many features with related hematopoietically derived macrophages. Microglia can become activated by misfolded proteins including the PD relevant example, alpha-synuclein, a presynaptic protein. When activated, microglia release pro-inflammatory diffusible mediators that promote dysfunction and contribute to the death of the PD vulnerable dopaminergic neurons in the midbrain. Recently, the orphan nuclear receptor Nurr1, well known as a critical determinant in dopaminergic neuron maturation, has been ascribed two new properties. First, it promotes the production and release of the neuropeptide vasoactive intestinal peptide that functions both to stimulate dopaminergic neuron survival and inhibit neuroinflammation. Second, Nurr1 suppresses the expression and release of pro-inflammatory cytokines in glial cells. Herein, we discuss these new findings in context of strategies to attenuate neuroinflammation in PD.


Assuntos
Encefalite , Mediadores da Inflamação/uso terapêutico , Doença de Parkinson/imunologia , Doença de Parkinson/terapia , Animais , Progressão da Doença , Dopamina/metabolismo , Encefalite/etiologia , Encefalite/imunologia , Encefalite/terapia , Humanos , Mediadores da Inflamação/metabolismo , Modelos Biológicos
16.
Front Neurosci ; 14: 585544, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343280

RESUMO

α-Synuclein is a 140-amino acid protein that readily misfolds and is associated with the Lewy body pathology found in sporadic and genetic forms of Parkinson's disease. We and others have shown that wild-type α-synuclein is a damage-associated molecular pattern that directly elicits a proinflammatory response in microglia through toll-like receptor activation. Here we investigated the direct effect of oligomeric mutant α-synuclein (A53T) on microglia morphology and activation. We found that misfolded A53T increased quantitative measures of amoeboid cell morphology, NFκB nuclear translocation and the expression of prototypical proinflammatory molecules. We also demonstrated that A53T increased expression of MMP13, a matrix metalloproteinase that remodels the extracellular matrix. To better understand the role of MMP13 in synucleinopathies, we further characterized the role of MMP13 in microglial signaling. We showed exposure of microglia to MMP13 induced a change in morphology and promoted the release of TNFα and MMP9. Notably, IL1ß was not released indicating that the pathway involved in MMP13 activation of microglia may be different than the A53T pathway. Lastly, MMP13 increased the expression of CD68 suggesting that the lysosomal pathway might be altered by this MMP. Taken together this study shows that mutant α-synuclein directly induces a proinflammatory phenotype in microglia, which includes the expression of MMP13. In turn, MMP13 directly alters microglia supporting the need for multi-target therapies to treat Parkinson's disease patients.

17.
Mol Ther ; 16(8): 1392-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18545225

RESUMO

In Parkinson's disease (PD) chronic inflammation occurs in the substantia nigra (SNc) concurrently with dopaminergic neurodegeneration. In models of PD, microglial activation precedes neurodegeneration in the SNc, suggesting that the underlying pathogenesis involves a complex response in the nigrostriatal pathway, and that the innate immune system plays a significant role. We have investigated the neuroprotective effect of an adeno-associated viral type-2 (AAV2) vector containing the complementary DNA (cDNA) for human interleukin-10 (hIL-10) in the unilateral 6-hydroxydopamine (6-OHDA) rat model of PD. AAV2-hIL-10 reduced the 6-OHDA-induced loss of tyrosine hydroxylase (TH)-positive neurons in the SNc, and also reduced loss of striatal dopamine (DA). Pretreatment with AAV2-hIL-10 reduced glial activation in the SNc but did not attenuate striatal release of the inflammatory cytokine IL-1beta. Assessment of rotational behavior in response to apomorphine challenge showed absence of asymmetry, confirming protection of dopaminergic innervation of the lesioned striatum. At baseline, 6-OHDA-lesioned animals displayed a deficit in contralateral forelimb use, but pretreatment with AAV2-hIL-10 reduced this forelimb akinesia. Transcriptional analyses revealed alteration of a few genes by AAV2-hIL-10; these alterations may contribute to neuroprotection. This study supports the need for further investigations relating to gene therapies aimed at reducing neuroinflammation in early PD.


Assuntos
Modelos Animais de Doenças , Terapia Genética/métodos , Interleucina-10/fisiologia , Doença de Parkinson/terapia , Animais , Apomorfina/farmacologia , Comportamento Animal/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Dependovirus/genética , Ensaio de Imunoadsorção Enzimática , Membro Anterior/efeitos dos fármacos , Membro Anterior/metabolismo , Membro Anterior/fisiopatologia , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Vetores Genéticos/genética , Humanos , Hidroxidopaminas/farmacologia , Imuno-Histoquímica , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia
18.
Front Pharmacol ; 9: 417, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780321

RESUMO

The innate immune response in the central nervous system (CNS) is implicated as both beneficial and detrimental to health. Integral to this process are microglia, the resident immune cells of the CNS. Microglia express a wide variety of pattern-recognition receptors, such as Toll-like receptors, that detect changes in the neural environment. The activation of microglia and the subsequent proinflammatory response has become increasingly relevant to synucleinopathies, including Parkinson's disease the second most prevalent neurodegenerative disease. Within these diseases there is evidence of the accumulation of endogenous α-synuclein that stimulates an inflammatory response from microglia via the Toll-like receptors. There have been recent developments in both new and old pharmacological agents designed to target microglia and curtail the inflammatory environment. This review will aim to delineate the process of microglia-mediated inflammation and new therapeutic avenues to manage the response.

19.
Brain Res ; 1134(1): 33-44, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17196186

RESUMO

Survival rates of dopamine (DA) neurons grafted to the denervated striatum are extremely poor (5-20%). Gene transfer of survival promoting factors, such as the anti-apoptotic protein bcl-2, to mesencephalic DA neurons prior to transplantation (ex vivo transduction) offers a novel approach to increase graft survival. However, specific criteria to assess the efficacy of various vectors must be adhered to in order to reasonably predict successful gene transfer with appropriate timing and levels of protein expression. Cell culture results utilizing three different herpes simplex virus (HSV) vectors to deliver the reporter beta-galactosidase gene (lacZ) indicate that transduction of mesencephalic cells with a helper virus-free HSV amplicon (HF HSV-TH9lac) that harbors the 9-kb tyrosine hydroxylase (TH) promoter to drive lacZ gene expression elicits the transduction of the highest percentage (approximately 50%) of TH-immunoreactive (THir) neurons without significant cytotoxic effects. This transduction efficiency and limited cytotoxicity was superior to that observed following transduction with helper virus-containing HSV (HC HSVlac) and helper virus-free HSV amplicons (HF HSVlac) expressing lacZ under the transcriptional control of the HSV immediate-early 4/5 gene promoter. Subsequently, we assessed the ability of HSV-TH9lac and the bcl-2 expressing HSV-TH9bcl-2 amplicon to transduce mesencephalic reaggregates. Although an increase in bcl-2 and beta-galactosidase protein was induced by transduction, amplicon-mediated overexpression of bcl-2 did not lead to an increase in grafted THir neuron number. Even with highly efficient viral vector-mediated transduction, our results demonstrate that ex vivo gene transfer of bcl-2 to mesencephalic reaggregates is ineffective in increasing grafted DA neuron survival.


Assuntos
Transplante de Tecido Encefálico/métodos , Sobrevivência de Enxerto/genética , Mesencéfalo/transplante , Neurônios/transplante , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução Genética/métodos , Animais , Contagem de Células , Células Cultivadas , Cricetinae , Dopamina/metabolismo , Vetores Genéticos/genética , Óperon Lac/genética , Masculino , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Ratos , Simplexvirus/genética , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Sci Rep ; 6: 35497, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762280

RESUMO

Matrix metalloproteinases (MMPs) are a family of secreted endopeptidases expressed by neurons and glia. Regulated MMP activity contributes to physiological synaptic plasticity, while dysregulated activity can stimulate injury. Disentangling the role individual MMPs play in synaptic plasticity is difficult due to overlapping structure and function as well as cell-type specific expression. Here, we develop a novel system to investigate the selective overexpression of a single MMP driven by GFAP expressing cells in vivo. We show that MMP-1 induces cellular and behavioral phenotypes consistent with enhanced signaling through the G-protein coupled protease activated receptor 1 (PAR1). Application of exogenous MMP-1, in vitro, stimulates PAR1 dependent increases in intracellular Ca2+ concentration and dendritic arborization. Overexpression of MMP-1, in vivo, increases dendritic complexity and induces biochemical and behavioral endpoints consistent with increased GPCR signaling. These data are exciting because we demonstrate that an astrocyte-derived protease can influence neuronal plasticity through an extracellular matrix independent mechanism.


Assuntos
Metaloproteinase 1 da Matriz/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Receptor PAR-1/agonistas , Animais , Astrócitos/metabolismo , Comportamento Animal , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Dendritos/metabolismo , Ativação Enzimática , Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Hibridização In Situ , Imageamento por Ressonância Magnética , Metaloproteinase 1 da Matriz/genética , Camundongos , Camundongos Transgênicos , Neuroglia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA