Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 33(5): 949-965, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35197326

RESUMO

BACKGROUND: The kidneys efficiently filter waste products while retaining serum proteins in the circulation. However, numerous diseases compromise this barrier function, resulting in spillage of serum proteins into the urine (proteinuria). Some studies of glomerular filtration suggest that tubules may be physiologically exposed to nephrotic-range protein levels. Therefore, whether serum components can directly injure the downstream tubular portions of the kidney, which in turn can lead to inflammation and fibrosis, remains controversial. METHODS: We tested the effects of serum protein exposure in human kidney tubule microphysiologic systems and with orthogonal epigenomic approaches since animal models cannot directly assess the effect of serum components on tubules. RESULTS: Serum, but not its major protein component albumin, induced tubular injury and secretion of proinflammatory cytokines. Epigenomic comparison of serum-injured tubules and intact kidney tissue revealed canonical stress-inducible regulation of injury-induced genes. Concordant transcriptional changes in microdissected tubulointerstitium were also observed in an independent cohort of patients with proteinuric kidney disease. CONCLUSIONS: Our results demonstrate a causal role for serum proteins in tubular injury and identify regulatory mechanisms and novel pathways for intervention.


Assuntos
Nefropatias , Túbulos Renais Proximais , Animais , Proteínas Sanguíneas , Feminino , Humanos , Nefropatias/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais Proximais/metabolismo , Masculino , Proteinúria/metabolismo
2.
Curr Opin Toxicol ; 302022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35495549

RESUMO

Nephrotoxicity testing is an important step in preclinical development of new molecular entities (NMEs) and has traditionally been performed in 2-D cell culture systems and animal models. However, 2-D culture systems fail to replicate complex in vivo microenvironment and animal models face interspecies differences including the overexpression of drug transporters. In the last decade, 3-D microphysiological systems (MPS) have been developed to address these concerns. Here, we review recent advancements in kidney MPS and their application in drug-induced toxicity testing and kidney disease research. We find that current research is making significant progress addressing MPS limitations such as throughput, incorporating various regions of the nephron such as the glomerulus, and successfully modeling and predicting clinically relevant nephrotoxicity of current and new drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA