Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 38(38): 8200-8210, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30093565

RESUMO

The serotonin-1A (5-HT1A) receptor is a key regulator of serotonergic activity and is implicated in mood and emotion. However, its post-transcriptional regulation has never been studied in humans. In the present study, we show that the "intronless" human 5-HT1A gene (HTR1A) is alternatively spliced in its 3'-UTR, yielding two novel splice variants. These variants lack a ∼1.6 kb intron, which contains an microRNA-135 (miR135) target site. Unlike the human HTR1A, the mouse HTR1A lacks the splice donor/accepter sites. Thus, in the mouse HTR1A, splicing was not detected. The two spliced mRNAs are extremely stable, are resistant to miR135-induced downregulation, and have greater translational output than the unspliced variant. Moreover, alternative HTR1A RNA splicing is oppositely regulated by the splice factors PTBP1 and nSR100, which inhibit or enhance its splicing, respectively. In postmortem human brain tissue from both sexes, HTR1A mRNA splicing was prevalent and region-specific. Unspliced HTR1A was expressed more strongly in the hippocampus and midbrain versus the prefrontal cortex (PFC), and correlated with reduced levels of nSR100. Importantly, HTR1A RNA splicing and nSR100 levels were reduced in the PFC of individuals with major depression compared with controls. Our unexpected findings uncover a novel mechanism to regulate HTR1A gene expression through alternative splicing of microRNA sites. Altered levels of splice factors could contribute to changes in regional and depression-related gene expression through alternative splicing.SIGNIFICANCE STATEMENT Alternative splicing, which is prevalent in brain tissue, increases gene diversity. The serotonin-1A receptor gene (HTR1A) is a regulator of serotonin, which is implicated in mood and emotion. Here we show that human HTR1A RNA is alternately spliced. Splicing removes a microRNA site to generate ultrastable RNA and increase HTR1A expression. This splicing varies in different brain regions and is reduced in major depression. We also identify specific splice factors for HTR1A RNA, showing they are also reduced in depression. Thus, we describe a novel mechanism to regulate gene expression through splicing. Altered levels of splice factors could contribute to depression by changing gene expression.


Assuntos
Processamento Alternativo , Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Mesencéfalo/metabolismo , Estabilidade de RNA/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , Adulto , Transtorno Depressivo Maior/genética , Feminino , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Receptor 5-HT1A de Serotonina/genética
2.
Am J Physiol Regul Integr Comp Physiol ; 304(9): R726-33, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23467324

RESUMO

Males have higher prevalence of hypertension and renal injury than females, which may be attributed in part to androgen-mediated effects on renal hemodynamics. Tubuloglomerular feedback (TGF) is an important mechanism in control of renal microcirculation. The present study examines the role of testosterone in the regulation of TGF responses. TGF was measured by micropuncture (change of stop-flow pressure, ΔPsf) in castrated Sprague-Dawley rats. The addition of testosterone (10(-7) mol/l) into the lumen increased the ΔPsf from 10.1 ± 1.2 to 12.2 ± 1.2 mmHg. To determine whether androgen receptors (AR) are involved, mRNA of AR was measured in the macula dense cells isolated by laser capture microdissection from kidneys, and a macula densa-like cell line (MMDD1). AR mRNA was expressed in the macula densa of rats and in MMDD1 cells. We next examined the effects of the AR blocker, flutamide (10(-5) mol/l) on the TGF response. The addition of flutamide blocked the effects of testosterone on TGF. The addition of Tempol (10(-4) mol/l) or polyethylene glycol-superoxide dismutase (100 U/ml) to scavenge superoxide blocked the effect of testosterone to augment TGF. We then applied apocynin to inhibit NAD(P)H oxidase and oxypurinol to inhibit xanthine oxidase and found the testosterone-induced augmentation of TGF was blocked. In additional experiments in MMDD1 cells, we found that testosterone increased O2(-) generation. Apocynin or oxypurinol blocked the testosterone-induced increases of O2(-), while blockade of COX-2 with NS-398 had no effect. These findings suggest that testosterone enhances TGF response by stimulating O2(-) production in macula densa via an AR-dependent pathway.


Assuntos
Retroalimentação Fisiológica/efeitos dos fármacos , Glomérulos Renais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Superóxidos/metabolismo , Testosterona/farmacologia , Antagonistas de Androgênios/farmacologia , Animais , Linhagem Celular , Óxidos N-Cíclicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Flutamida/farmacologia , Sequestradores de Radicais Livres/farmacologia , Masculino , NADPH Oxidases/metabolismo , Nitrobenzenos/farmacologia , RNA/biossíntese , RNA/genética , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/efeitos dos fármacos , Marcadores de Spin , Sulfonamidas/farmacologia , Superóxido Dismutase/farmacologia , Xantina Oxidase/metabolismo
3.
J Clin Endocrinol Metab ; 108(7): 1740-1746, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-36617249

RESUMO

CONTEXT: Metformin is the first-line drug for treating diabetes but has a high failure rate. OBJECTIVE: To identify demographic and clinical factors available in the electronic health record (EHR) that predict metformin failure. METHODS: A cohort of patients with at least 1 abnormal diabetes screening test that initiated metformin was identified at 3 sites (Arizona, Mississippi, and Minnesota). We identified 22 047 metformin initiators (48% female, mean age of 57 ± 14 years) including 2141 African Americans, 440 Asians, 962 Other/Multiracial, 1539 Hispanics, and 16 764 non-Hispanic White people. We defined metformin failure as either the lack of a target glycated hemoglobin (HbA1c) (<7%) within 18 months of index or the start of dual therapy. We used tree-based extreme gradient boosting (XGBoost) models to assess overall risk prediction performance and relative contribution of individual factors when using EHR data for risk of metformin failure. RESULTS: In this large diverse population, we observed a high rate of metformin failure (43%). The XGBoost model that included baseline HbA1c, age, sex, and race/ethnicity corresponded to high discrimination performance (C-index of 0.731; 95% CI 0.722, 0.740) for risk of metformin failure. Baseline HbA1c corresponded to the largest feature performance with higher levels associated with metformin failure. The addition of other clinical factors improved model performance (0.745; 95% CI 0.737, 0.754, P < .0001). CONCLUSION: Baseline HbA1c was the strongest predictor of metformin failure and additional factors substantially improved performance suggesting that routinely available clinical data could be used to identify patients at high risk of metformin failure who might benefit from closer monitoring and earlier treatment intensification.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Metformina/uso terapêutico , Hipoglicemiantes/uso terapêutico , Registros Eletrônicos de Saúde , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Hemoglobinas Glicadas , Reposicionamento de Medicamentos , Estudos Retrospectivos
4.
Artigo em Inglês | MEDLINE | ID: mdl-29175309

RESUMO

Major Depressive Disorder (MDD) is a common psychiatric disorder for which available medications are often not effective. The high prevalence of MDD and modest response to existing therapies compels efforts to better understand and treat the disorder. Decreased hippocampal volume with increasing duration of depression suggests altered gene expression or even a decrease in neurogenesis. Tissue punches from the dentate gyrus were collected postmortem from 23 subjects with MDD and 23 psychiatrically-normal control subjects. Total RNA was isolated and whole transcriptome paired-end RNA-sequencing was performed using an Illumina NextSeq 500. For each sample, raw RNA-seq reads were aligned to the Ensembl GRCh38 human reference genome. Analysis revealed 30 genes differentially expressed in MDD compared to controls (FDR<0.05). Down-regulated genes included several with inflammatory function (ISG15, IFI44L, IFI6, NR4A1/Nur-77) and GABBR1 while up-regulated genes included several with cytokine function (CCL2/MCP-1), inhibitors of angiogenesis (ADM, ADAMTS9), and the KANSL1 gene, a histone acetyltransferase. Similar analyses of specific subsets of MDD subjects (suicide vs. non-suicide, single vs. multiple episodes) yielded similar, though not identical, results. Enrichment analysis identified an over-representation of inflammatory and neurogenesis-related (ERK/MAPK) signaling pathways significantly altered in the hippocampal dentate gyrus in MDD. Together, these data implicate neuro-inflammation as playing a crucial role in MDD. These findings support continued efforts to identify adjunctive approaches towards the treatment of MDD with drugs including anti-inflammatory and neuroprotective properties.


Assuntos
Giro Denteado/metabolismo , Transtorno Depressivo Maior/metabolismo , Expressão Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Transcriptoma , Adulto Jovem
5.
Biol Psychiatry ; 56(9): 640-50, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15522247

RESUMO

BACKGROUND: Imaging studies report that hippocampal volume is decreased in major depressive disorder (MDD). A cellular basis for reduced hippocampal volume in MDD has not been identified. METHODS: Sections of right hippocampus were collected in 19 subjects with MDD and 21 normal control subjects. The density of pyramidal neurons, dentate granule cell neurons, glia, and the size of the neuronal somal area were measured in systematic, randomly placed three-dimensional optical disector counting boxes. RESULTS: In MDD, cryostat-cut hippocampal sections shrink in depth a significant 18% greater amount than in control subjects. The density of granule cells and glia in the dentate gyrus and pyramidal neurons and glia in all cornv ammonis (CA)/hippocampal subfields is significantly increased by 30%-35% in MDD. The average soma size of pyramidal neurons is significantly decreased in MDD. CONCLUSION: In MDD, the packing density of glia, pyramidal neurons, and granule cell neurons is significantly increased in all hippocampal subfields and the dentate gyrus, and pyramidal neuron soma size is significantly decreased as well. It is suggested that a significant reduction in neuropil in MDD may account for decreased hippocampal volume detected by neuroimaging. In addition, differential shrinkage of frozen sections of the hippocampus suggests differential water content in hippocampus in MDD.


Assuntos
Transtorno Depressivo Maior/patologia , Hipocampo/patologia , Neurônios/patologia , Mudanças Depois da Morte , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Contagem de Células/métodos , Tamanho Celular , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Neuroglia/patologia , Coloração e Rotulagem/métodos , Fatores de Tempo
6.
J Psychiatr Res ; 47(3): 299-306, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23201228

RESUMO

Neuroimaging consistently reveals smaller hippocampal volume in recurrent or chronic major depressive disorder (MDD). The underlying cellular correlates of the smaller volume are not clearly known. Postmortem tissues from 17 pairs of depressed and control subjects were obtained at autopsy, and informant-based retrospective psychiatric assessment was performed. Formalin-fixed left temporal lobes were sectioned (40 µm), stained for Nissl substance, and every 60th section selected throughout the entire hippocampus. Total volume of the hippocampal formation was calculated, and total numbers of pyramidal neurons (in hippocampal fields CA1, CA2/3, hilus), dentate gyrus (DG) granule cells, and glial cells were estimated stereologically. While hippocampal volume in all MDD subjects was not significantly smaller versus control subjects, in recurrent/chronic MDD, total volume decreased with duration of depressive illness (r = -0.696, p < 0.026). There was no significant difference between MDD and controls in total number or density of pyramidal neurons/granule cells or glial cells in CA1, CA2/3, hilus, or DG. However, CA1 pyramidal neuron density increased with duration of illness in recurrent/chronic MDD (r = 0.840, p < 0.002). Granule cell (r = 0.971, p < 0.002) and glial cell numbers (r = 0.980, p < 0.001) increased with age in those taking antidepressant medication (n = 6). Increasing DG granule cell and glial cell numbers with age in antidepressant-treated subjects may reflect proliferative effects of antidepressant medications. Decreasing total volume and increasing CA1 pyramidal neuron density with duration of illness in recurrent/chronic MDD lends support to the neuropil hypothesis of MDD.


Assuntos
Transtorno Depressivo Maior/patologia , Hipocampo/patologia , Neurônios/patologia , Contagem de Células , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estatísticas não Paramétricas , Técnicas Estereotáxicas
7.
PLoS One ; 7(8): e43227, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912834

RESUMO

A-to-I RNA editing is a post-transcriptional modification of single nucleotides in RNA by adenosine deamination, which thereby diversifies the gene products encoded in the genome. Thousands of potential RNA editing sites have been identified by recent studies (e.g. see Li et al, Science 2009); however, only a handful of these sites have been independently confirmed. Here, we systematically and quantitatively examined 109 putative coding region A-to-I RNA editing sites in three sets of normal human brain samples by ultra-high-throughput sequencing (uHTS). Forty of 109 putative sites, including 25 previously confirmed sites, were validated as truly edited in our brain samples, suggesting an overestimation of A-to-I RNA editing in these putative sites by Li et al (2009). To evaluate RNA editing in human disease, we analyzed 29 of the confirmed sites in subjects with major depressive disorder and schizophrenia using uHTS. In striking contrast to many prior studies, we did not find significant alterations in the frequency of RNA editing at any of the editing sites in samples from these patients, including within the 5HT(2C) serotonin receptor (HTR2C). Our results indicate that uHTS is a fast, quantitative and high-throughput method to assess RNA editing in human physiology and disease and that many prior studies of RNA editing may overestimate both the extent and disease-related variability of RNA editing at the sites we examined in the human brain.


Assuntos
Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Fases de Leitura Aberta/genética , Edição de RNA/genética , Esquizofrenia/genética , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA