Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 204(Pt B): 112067, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34543636

RESUMO

COVID-19 positive patients can egest live SARS-CoV-2 virus and viral genome fragments through faecal matter and urine, raising concerns about viral transmission through the faecal-oral route and/or contaminated aerosolized water. These concerns are amplified in many low- and middle-income countries, where raw sewage is often discharged into surface waterways and open defecation is common. Nonetheless, there has been no evidence of COVID-19 transmission via ambient urban water, and the virus viability in such aquatic matrices is believed to be minimal and not a matter of concern. In this manuscript, we attempt to discern the presence of SARS-CoV-2 genetic material (ORF-1ab, N and S genes) in the urban water (lakes, rivers, and drains) of the two Indian cities viz., Ahmedabad (AMD), in western India with 9 wastewater treatment plants (WWTPs) and Guwahati (GHY), in the north-east of the country with no such treatment facilities. The present study was carried out to establish the applicability of environmental water surveillance (E-wat-Surveillance) of COVID-19 as a potential tool for public health monitoring at the community level. 25.8% and 20% of the urban water samples had detectable SARS-CoV-2 RNA load in AMD and GHY, respectively. N-gene > S-gene > ORF-1ab-gene were readily detected in the urban surface water of AMD, whereas no such observable trend was noticed in the case of GHY. The high concentrations of SARS-CoV-2 genes (e.g., ORF-1ab; 800 copies/L for Sabarmati River, AMD and S-gene; 565 copies/L for Bharalu urban river, GHY) found in urban waters suggest that WWTPs do not always completely remove the virus genetic material and that E-wat-Surveillance of COVID-19 in cities/rural areas with poor sanitation is possible.


Assuntos
COVID-19 , SARS-CoV-2 , Cidades , Humanos , RNA Viral , Saneamento , Águas Residuárias
2.
J Environ Manage ; 231: 166-181, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342329

RESUMO

Arsenic contaminated shallow aquifers evaluation, mitigation, and management strategies are the challenging task to all the hydrologist and provide a safe drinking water demand in the Holocene age, alluvial aquifers. To manage and mitigate such problems, we used numerical groundwater modeling software (GMS 10.2), for the development of 3D transient state predictive (groundwater flow and contaminant transport) conceptual model for two topographically different arsenic contaminated regions. The models were built by using the measured hydro-geological data, empirical values, and equations. Groundwater flow calibration, sensitivity analyses, and validation were performed for each soil parameters, varying boundary conditions and for alternate meteorological scenarios. The MODFLOW results suggested that, the distribution of As contaminant was directly controlled by the complex hydrostratigraphy, surface water bodies and indirectly controlled by the change in meteorological conditions. The MT3DMS model, for As contaminant transport, used for the assessment of shallow and deeper aquifers. The results showed that the downward movement of As has made the deeper aquifer unsafe for drinking water and irrigation purposes. However, the aquifers and regions with high flushing capability, negligible vertical hydraulic conductivity can be delineated as As safe groundwater source, irrespective of their sediment color. Therefore, for the geogenic source of As, both the simulation results inferred that to estimate and mitigate As contaminant groundwater aquifers or regions, the numerical modeling solution is a technically viable means an effective decision-making tool.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental
3.
Environ Monit Assess ; 187(3): 93, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25663398

RESUMO

Dissolved arsenic mobility in the environment is controlled by its associations with solid-phase As and other minerals by chemodynamics of adsorptions and co-precipitation. Arsenic mobilization potential and mechanisms in the groundwater of a part of the river Brahmaputra alluvial plain in India were inferred from aqueous and solid-phase geochemical analyses of groundwater samples and sediment cores from various depths. Sediments were analyzed for key parameters, e.g., total and sequentially extracted Fe, As, and Mn; organic carbon content; carbonate phases; and specific surface area, while groundwater samples collected from close proximity of the drilled bore well were analyzed for major and trace element hydrogeochemistry. Result shows Mn- and Fe-oxyhydroxides as the major leachable As solid phases. Median total leachable solid-phase As was found to be ~9.50 mg/kg, while groundwater As ranged between 0.05 and 0.44 mg/L from adjoining water wells. Morphological and mineralogical studies of the aquifer sediments conducted using scanning electronic microscope energy-dispersive X-ray (SEM-EDX) and X-ray diffraction (XRD) analysis indicate the major presence of Fe- and Mn-oxyhydroxides. Sequential leaching experiments along with the mineralogical studies suggest that bacterially mediated, reductive dissolution of MnOOH and FeOOH is probably an important mechanism for releasing As into the groundwater from the sediments.


Assuntos
Arsênio/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Adsorção , Carbonatos/análise , Sedimentos Geológicos/química , Água Subterrânea/química , Índia , Minerais/análise , Rios/química , Água/análise , Abastecimento de Água/análise , Difração de Raios X
4.
Environ Monit Assess ; 186(10): 6805-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24981878

RESUMO

Arsenic (As) mobilization to the groundwater of Brahmaputra floodplains was investigated in Titabor, Jorhat District, located in the North Eastern part of India. The groundwater and the aquifer geochemistry were characterized in the study area. The range of As concentration in the groundwater varies from 10 to 440 µg/l with mean concentration 210 µg/l. The groundwaters are characterized by high dissolved Fe, Mn, and HCO3(-) and low concentrations of NO3(-) and SO4(2-) indicating the reduced conditions prevailing in the groundwater. In order to understand the actual mobilization processes in the area, six core drilling surrounding the two target tube wells (T1 and T2) with high As concentration (three drill-cores surrounds each tube well closely) was done. The sediment was analyzed its chemical, mineralogical, and elemental compositions. A selective sequential extraction suggested that most of the As in the sediment is bound to Fe oxides fractions (32 to 50%) and the competition for adsorption site by anions (PO4(3-)) also accounts to significant fractions of the total arsenic extracted. High variability in the extraction as well as properties of the sediment was observed due to the heterogeneity of the sediment samples with different chemical properties. The SEM and EDX results indicate the presence of Fe, Mn coating along with As for most of the sample, and the presence of As associated minerals were calculated using PHREEQC. The mobilization of As into the groundwater was anticipated to be largely controlled by the reductive dissolution of Fe oxides and partly by the competitive anions viz. PO4(3-).


Assuntos
Arsênio/análise , Monitoramento Ambiental , Sedimentos Geológicos/química , Água Subterrânea/química , Poluentes Químicos da Água/análise , Adsorção , Ânions , Arsênio/química , Índia , Óxidos , Poluentes Químicos da Água/química
5.
Heliyon ; 10(7): e28404, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571582

RESUMO

Effective management of water resources is essential for crop diversification and food security. This study proposes an Irrigation-Food-Environment-Chance-constrained Programming (IFEC) model for simultaneously optimizing crop planting area, irrigation water, and residual fertilizer considering inflow uncertainty along with farmer preference crop. Eight irrigation water allocation optimal models were constructed, fixing the preference crop cultivation area, while deviations in downstream release, and vegetable crop area cultivation were executed for sensitivity analysis. Model is then applied in a command area fed by a sub-tributary of Brahmaputra, India. On averaging, plant available N and P for the area were 62.14 kg ha-1 and 1.13 kg ha-1 respectively. With variation in available water, changes would occur in vegetable and cereal crops having higher yield and relatively less crop water requirement as compared to maize. Results showed that complying with preference crop area up to 60% would decrease the profit by 49% as compared to 20% at even 10% risk probability for 70% release. At existing conditions, water would be insufficient at 60% preference crop. Further, R2 value between benefit and water availability for vegetable cultivation varies from 0.99 to 0.78 for all scenarios. The tool featured that, setting specific preference crop areas provides equitable situation rather than mono-cropping. From the study findings, we suggest two salient recommendations: (1) promoting policies with appropriate financial subsidies for vegetable cultivation that focus on intensification with less water-requiring crops and (2) optimization results could be achieved by expanding the water utilization in the present condition while increasing efficiency.

6.
Geohealth ; 6(3): e2021GH000585, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35340282

RESUMO

Arsenic (As) is a well-known carcinogen and chemical contaminant in groundwater. The spatial heterogeneity in As distribution in groundwater makes it difficult to predict the location of safe areas for tube well installations, consumption, and agriculture. Geospatial machine learning techniques have been used to predict the location of safe and unsafe areas of groundwater As. We used a similar machine learning technique and developed a habitation-level (spatial resolution 250 m) predictive model to determine the risk and extent of As >10 µg/L in groundwater in the two most affected districts of Assam, India, with an aim to advise policymakers on targeted interventions. A random forest model was employed in Python environments to predict the probabilities of As at concentrations >10 µg/L using intrinsic and extrinsic predictor variables, which were selected for their inherent relationship with As occurrence in groundwater. The relationships between predictor variables and proportions of As occurrences >10 µg/L follow the well-documented processes leading to As release in groundwater. We identified potential As hotspots based on a probability of ≥0.7 for As >10 µg/L, including regions not previously surveyed and extending beyond previously known As hotspots. Of the total land area (6,500 km2), 25% was identified as a high-risk zone, with an estimated 155,000 people potentially consuming As through drinking water or cooking food. The ternary hazard probability map (showing high, moderate, and low risk for As >10 µg/L) could inform policymakers on establishing newer drinking water treatment plants and providing safe drinking water connections to rural households.

7.
Sci Total Environ ; 689: 1370-1387, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31466173

RESUMO

High groundwater arsenic (As) across the globe has been one of the most well researched environmental concerns during the last two decades. Consequently, a large scientific knowledge-base has been developed on As distributions from local to global scales. However, differences in bulk sediment As concentrations cannot account for the As concentration variability in groundwater. Instead, in general, only aquifers in sedimentary basins adjacent to mountain chains (orogenic foreland basins) along continental convergent tectonic margins are found to be As-enriched. We illustrate this association by integrating observations from long-term studies of two of the largest orogenic systems (i.e., As sources) and the aquifers in their associated foreland basins (As sinks), which are located in opposite hemispheres and experience distinct differences in climate and land-use patterns. The Andean orogenic system of South America (AB), an active continental margin, is in principle a modern analogue of the Himalayan orogenic system associated with the Indus-Ganges-Brahmaputra river systems in South Asia (HB). In general, the differences in hydrogeochemistry between AB and HB groundwaters are conspicuous. Major-solute composition of the arid, oxic AB groundwater exhibits a mixed-ion hydrochemical facies dominated by Na-Ca-Cl-SO4-HCO3. Molar calculations and thermodynamic modeling show that although groundwater of AB is influenced by cation exchange, its hydrochemical evolution is predominated by feldspar dissolution and relationships with secondary clays. In contrast, humid, strongly reducing groundwater of HB is dominated by Ca-HCO3 facies, suggestive of calcite dissolution, along with some weathering of silicates (monosiallitization). This work demonstrates that although hydrogeochemical evolutionary trends may vary with local climate and lithology, the fundamental similarities in global tectonic settings can still lead to the elevated concentrations of groundwater As.

8.
J Contam Hydrol ; 213: 1-14, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29598853

RESUMO

In the dynamic cycling of oxic and anoxic aqueous alluvial aquifer environments, varying Arsenic (As) concentrations are controlled by both abiotic and biotic factors. Studies have shown a significant form of toxic As (III) being released through the reductive dissolution of iron-oxy/hydroxide minerals and microbial reduction mechanisms, which leads to a serious health concern. The present study was performed in order to assess the abiotic and biotic factors influencing As release into the alluvial aquifer groundwater in Brahmaputra floodplain, India. The groundwater chemistry, characterization of the sediments, isolation, identification and characterization of prominent As releasing indigenous bacterium were conducted. The measured solid and liquid phases of total As concentration were ranged between 0.02 and 17.2 mg kg-1 and 8 to 353 µg L-1, respectively. The morphology and mineralogy showed the presence of detrital and authigenic mineral assemblages whereas primary and secondary As bearing Realgar and Claudetite minerals were identified, respectively. Furthermore, significant non-labile As fraction was found associated with the amorphous oxides of Fe, Mn and Al. The observed groundwater chemistry and sediment color, deduced a sub-oxic reducing aquifer conditions in As-contaminated regions. In addition, 16S rDNA sequencing results of the isolated bacterium showed the prominent Pseudomonas aeruginosa responsible for the mobilization of As, reducing condition, biomineralization and causing grey color to the sediments at the shallower and deeper aquifers in the study area. These findings suggest that microbial metabolic activities are equally responsible in iron-oxy/hydroxide reductive dissolution, controlling As mobilization in dynamic fluvial flood plains.


Assuntos
Arsênio/análise , Bactérias/metabolismo , Água Subterrânea/química , Água Subterrânea/microbiologia , Poluentes Químicos da Água/análise , Arsênio/química , Bactérias/genética , Monitoramento Ambiental , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Água Subterrânea/análise , Índia , Ferro/química , Minerais/análise , Minerais/química , Óxidos/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Poluentes Químicos da Água/química
9.
Environ Sci Process Impacts ; 18(1): 115-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26647841

RESUMO

Natural attenuation of higher arsenic (As) concentration in the groundwater of the Brahmaputra valley of Assam can be a viable option for its remediation. The assessment of attenuation capacities in aquifers was done using three sediment core samples (namely C_50, C_70 and C_150) representing the commonly found sediments and characterized as viz. reduced, oxidized and moderately oxidized sediments, respectively. The feasability of aquifers to release low As water depends on the sorption capacity of the sediments to directly adsorbed as As(III) and/or oxidation to As(V) on oxidative sites. The various batch sorption experiments along with competition of other anions for adsorption sites at different concentrations were investigated. The sediments were observed to adsorb both As(III) and As(V) with varying magnitudes depending on the species of As, pH and concentrations of competing anions. The Elovich kinetic model best described kinetic test data. The oxidized sediment (C_70) with the highest Fe and Mn content has the highest adsorption capacity. The competition for adsorption sites with As(V) in the sediment samples followed the order PO4(3-) > SiO2 > HCO3(-). The oxidation of As(III) to As(V) by the sediments was analyzed as it is also the most effective pathway to reduce the toxicity as well as the mobility of As in the subsurface environment. Sediment C_70 showed the highest potential to oxidize As(III) to As(V) in the oxidative sites of the sediments. The removal of As(III) in the oxidative site via As(V) was the dominant As removal mechanism for the oxidized sediment (C_70) and moderately oxidized sediment (C_150) than the direct adsorption of As(III) on the adsorptive sites as on reduced sediment sample C_50. Therefore, targeting the oxidized sediment with a high concentration of Fe-oxides and Mn-oxides might make natural attenuation of As viable in the study areas.


Assuntos
Arsênio/análise , Monitoramento Ambiental , Água Subterrânea/química , Poluentes Químicos da Água/análise , Arsênio/química , Índia , Oxirredução
10.
Mater Sci Eng C Mater Biol Appl ; 46: 463-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25492011

RESUMO

Here we report the synthesis of silver nanoparticles using ethanolic flower extract of Nyctanthes arbortristis, UVvisible spectra and TEM indicated the successful formation of silver nanoparticles. Crystalline nature of the silver nanoparticles was confirmed by X-ray diffraction. Fourier Transform Infra-Red Spectroscopy analysis established the capping of the synthesized silver nanoparticles with phytochemicals naturally occurring in the ethanolic flower extract of N. arbortristis. The synthesized silver nanoparticles showed antibacterial activity against the pathogenic strain of Escherichia coli MTCC 443. Furthermore, cytotoxicity of the silver nanoparticles was tested on mouse fibroblastic cell line (L929) and found to be non-toxic, which thus proved their biocompatibility. Antibacterial activity and cytotoxicity assay carried out in this study open up an important perspective of the synthesized silver nanoparticles.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Nanopartículas Metálicas , Oleaceae/química , Extratos Vegetais/farmacologia , Prata/química , Animais , Linhagem Celular , Etanol/química , Técnicas In Vitro , Camundongos , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta
11.
Environ Sci Process Impacts ; 15(9): 1775-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23925481

RESUMO

Groundwater in the Brahmaputra river basin is known to contain an elevated concentration of naturally occurring Arsenic (As). To better understand the mobilization processes responsible for the As enrichment in the groundwater of the alluvial plains of the Brahmaputra river, the hydrochemical characteristics of the groundwater were studied in two districts, namely the Darrang and Jorhat districts of Assam. A total of 217 groundwater samples were analyzed for 20 water quality parameters. A lower As concentration was observed in the Darrang district with a mean concentration of 0.02 µg l(-1), while the Jorhat district had a higher As concentration (mean 100 µg l(-1)). The groundwater in the study areas is characterized by high concentrations of dissolved Fe, Mn, HCO3(-) and PO4(3-) and low concentrations of NO3(-) and SO4(2-). The redox potential and the groundwater composition showed reducing conditions in the groundwater. A difference in the groundwater geochemistry between the two districts was observed and was mainly controlled by the redox conditions in the subsurface, which control the mobility of As in the floodplains. The saturation indices of various As associated minerals were calculated using the geochemical code PHREEQC. The mobilization of As into the groundwater was anticipated to be largely controlled by the reductive dissolution of Fe-oxides and Mn-oxides and partly by competitive anions viz. PO4(3-).


Assuntos
Arsênio/análise , Monitoramento Ambiental , Água Subterrânea/análise , Compostos Férricos/química , Sedimentos Geológicos/química , Índia , Compostos de Manganês/química , Oxirredução , Óxidos/química , Fosfatos/química
12.
Environ Monit Assess ; 130(1-3): 221-36, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17106781

RESUMO

Guwahati, the lone city on the bank of the entire midstream of the Brahmaputra River, is facing acute civic problem due to severe depletion of water quality of its natural water bodies. This work is an attempt towards water quality assessment of a relatively small tributary of the Brahmaputra called the Bharalu River flowing through the city that has been transformed today into a city drainage channel. By analyzing the key physical, chemical and biological parameters for samples drawn from different locations, an assessment of the dissolved load and pollution levels at different segments in the river was made. Locations where the contaminants exceeded the permissible limits during different seasons were identified by examining spatial and temporal variations. A GIS developed for the watershed with four layers of data was used for evaluating the influence of catchment land use characteristics. BOD, DO and total phosphorus were found to be the sensitive parameters that adversely affected the water quality of Bharalu. Relationship among different parameters revealed that the causes and sources of water quality degradation in the study area were due to catchments input, anthropogenic activities and poor waste management. Elevated levels of total phosphorus, BOD and depleted DO level in the downstream were used to develop an ANN model by taking total phosphorus and BOD as inputs and dissolved oxygen as output, which indicated that an ANN based predictive tool can be utilized for monitoring water quality in the future.


Assuntos
Rios/química , Eliminação de Resíduos Líquidos , Poluição Química da Água/análise , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Índia , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA