Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569792

RESUMO

Sixteen new thalidomide analogs were synthesized. The new candidates showed potent in vitro antiproliferative activities against three human cancer cell lines, namely hepatocellular carcinoma (HepG-2), prostate cancer (PC3), and breast cancer (MCF-7). It was found that compounds XII, XIIIa, XIIIb, XIIIc, XIIId, XIVa, XIVb, and XIVc showed IC50 values ranging from 2.03 to 13.39 µg/mL, exhibiting higher activities than thalidomide against all tested cancer cell lines. Compound XIIIa was the most potent candidate, with an IC50 of 2.03 ± 0.11, 2.51 ± 0.2, and 0.82 ± 0.02 µg/mL compared to 11.26 ± 0.54, 14.58 ± 0.57, and 16.87 ± 0.7 µg/mL for thalidomide against HepG-2, PC3, and MCF-7 cells, respectively. Furthermore, compound XIVc reduced the expression of NFκB P65 levels in HepG-2 cells from 278.1 pg/mL to 63.1 pg/mL compared to 110.5 pg/mL for thalidomide. Moreover, compound XIVc induced an eightfold increase in caspase-8 levels with a simultaneous decrease in TNF-α and VEGF levels in HepG-2 cells. Additionally, compound XIVc induced apoptosis and cell cycle arrest. Our results reveal that the new candidates are potential anticancer candidates, particularly XIIIa and XIVc. Consequently, they should be considered for further evaluation for the development of new anticancer drugs.


Assuntos
Antineoplásicos , Talidomida , Masculino , Humanos , Talidomida/farmacologia , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Quinazolinas/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Adjuvantes Imunológicos/farmacologia , Células MCF-7 , Fatores Imunológicos/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Apoptose , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga
2.
Mol Divers ; 26(4): 1915-1932, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34460053

RESUMO

Vascular endothelial growth factor receptor-2 (VEGFR-2) is critically involved in cancer angiogenesis. Blocking of VEGFR-2 signaling pathway proved effective suppression of tumor growth. Accordingly, two series of new triazoloquinoxaline-based derivatives were designed and synthesized as VEGFR-2 inhibitors. All in vitro cytotoxic activities of the synthesized compounds were evaluated against two human cancer cell lines (MCF-7 and HepG2). To confirm the potential mechanism of cytotoxicity, enzymatic assays against VEGFR-2 were estimated for all the target compounds. The results of VEGFR-2 inhibitory activity and cytotoxicity were in high correlation. Compound 22a exhibited the highest cytotoxic effect with IC50 values of 6.2 and 4.9 µM against MCF-7 and HepG2, respectively, comparing to sorafenib (IC50 = 3.53 and 2.18 µM). Such derivative showed the best VEGFR-2 inhibitory activity with an IC50 value of 3.9 nM, which is very close to that of sorafenib (IC50 = 3.13 nM). Moreover, compounds 22b, 23b, and 23e exhibited strong cytotoxic activity with IC50 values ranging from 11.7 to 15.3 µM. Also, these compounds showed promising VEGFR-2 inhibition with IC50 values of 4.2, 5.7, and 4.7 nM, respectively. In silico docking, ADMET, and toxicity studies were carried out for the synthesized compounds. The results revealed that some compounds have a good binding mode against VEGFR-2 and a high level of drug-likeness.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Quinoxalinas/farmacologia , Sorafenibe/farmacologia , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/farmacologia
3.
J Enzyme Inhib Med Chem ; 37(1): 299-314, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894955

RESUMO

This research presents the design and synthesis of a novel series of phthalazine derivatives as Topo II inhibitors, DNA intercalators, and cytotoxic agents. In vitro testing of the new compounds against HepG-2, MCF-7, and HCT-116 cell lines confirmed their potent cytotoxic activity with low IC50 values. Topo II inhibition and DNA intercalating activities were evaluated for the most cytotoxic members. IC50 values determination demonstrated Topo II inhibitory activities and DNA intercalating affinities of the tested compounds at a micromolar level. Amongst, compound 9d was the most potent member. It inhibited Topo II enzyme at IC50 value of 7.02 ± 0.54 µM with DNA intercalating IC50 of 26.19 ± 1.14 µM. Compound 9d was then subjected to an in vivo antitumor examination. It inhibited tumour proliferation reducing solid tumour volume and mass. Additionally, it restored liver enzymes, proteins, and CBC parameters near-normal, indicating a remarkable amelioration in their functions along with histopathological examinations.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , DNA/química , Desenho de Fármacos , Simulação de Acoplamento Molecular , Ftalazinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ftalazinas/síntese química , Ftalazinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
4.
J Enzyme Inhib Med Chem ; 37(1): 397-410, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34961427

RESUMO

A new series of benzoxazole derivatives were designed and synthesised to have the main essential pharmacophoric features of VEGFR-2 inhibitors. Cytotoxic activities were evaluated for all derivatives against two human cancer cell lines, MCF-7 and HepG2. Also, the effect of the most cytotoxic derivatives on VEGFR-2 protein concentration was assessed by ELISA. Compounds 14o, 14l, and 14b showed the highest activities with VEGFR-2 protein concentrations of 586.3, 636.2, and 705.7 pg/ml, respectively. Additionally, the anti-angiogenic property of compound 14b against human umbilical vascular endothelial cell (HUVEC) was performed using a wound healing migration assay. Compound 14b reduced proliferation and migratory potential of HUVEC cells. Furthermore, compound 14b was subjected to further biological investigations including cell cycle and apoptosis analyses. Compound 14b arrested the HepG2 cell growth at the Pre-G1 phase and induced apoptosis by 16.52%, compared to 0.67% in the control (HepG2) cells. The effect of apoptosis was buttressed by a 4.8-fold increase in caspase-3 level compared to the control cells. Besides, different in silico docking studies were also performed to get better insights into the possible binding mode of the target compounds with VEGFR-2 active sites.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzoxazóis/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoxazóis/síntese química , Benzoxazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
J Enzyme Inhib Med Chem ; 37(1): 1587-1599, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35637622

RESUMO

A novel series of 2-thioacetamide linked benzoxazole-benzamide conjugates 1-15 was designed as potential inhibitors of the vascular endothelial growth factor receptor-2 (VEGFR-2). The prepared compounds were evaluated for their potential antitumor activity and their corresponding selective cytotoxicity was estimated using normal human fibroblast (WI-38) cells. Compounds 1, 9-12 and 15 showed good selectivity and displayed excellent cytotoxic activity against both HCT-116 and MCF-7 cancer cell lines compared to sorafenib, used as a reference compound. Furthermore, compounds 1 and 11 showed potent VEGFR-2 inhibitory activity. The cell cycle progression assay showed that 1 and 11 induced cell cycle arrest at G2/M phase, with a concomitant increase in the pre-G1 cell population. Further pharmacological studies showed that 1 and 11 induced apoptosis and inhibited the expression of the anti-apoptotic Bcl-2 and Bcl-xL proteins in both cell lines. Therefore, compounds 1 and 11 might serve as promising candidates for future anticancer therapy development.


Assuntos
Benzoxazóis , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Apoptose , Benzamidas/farmacologia , Benzoxazóis/farmacologia , Desenho de Fármacos , Fibroblastos , Células HCT116 , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
6.
J Enzyme Inhib Med Chem ; 37(1): 2063-2077, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35875937

RESUMO

In this study, a set of novel benzoxazole derivatives were designed, synthesised, and biologically evaluated as potential VEGFR-2 inhibitors. Five compounds (12d, 12f, 12i, 12l, and 13a) displayed high growth inhibitory activities against HepG2 and MCF-7 cell lines and were further investigated for their VEGFR-2 inhibitory activities. The most potent anti-proliferative member 12 l (IC50 = 10.50 µM and 15.21 µM against HepG2 and MCF-7, respectively) had the most promising VEGFR-2 inhibitory activity (IC50 = 97.38 nM). A further biological evaluation revealed that compound 12l could arrest the HepG2 cell growth mainly at the Pre-G1 and G1 phases. Furthermore, compound 12l could induce apoptosis in HepG2 cells by 35.13%. likely, compound 12l exhibited a significant elevation in caspase-3 level (2.98-fold) and BAX (3.40-fold), and a significant reduction in Bcl-2 level (2.12-fold). Finally, docking studies indicated that 12l exhibited interactions with the key amino acids in a similar way to sorafenib.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Apoptose , Benzoxazóis , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade
7.
J Enzyme Inhib Med Chem ; 37(1): 531-541, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34991416

RESUMO

Different 2,4-thiazolidinedione-tethered coumarins 5a-b, 10a-n and 11a-d were synthesised and evaluated for their inhibitory action against the cancer-associated hCAs IX and XII, as well as the physiologically dominant hCAs I and II to explore their selectivity. Un-substituted phenyl-bearing coumarins 10a, 10 h, and 2-thienyl/furyl-bearing coumarins 11a-c exhibited the best hCA IX (KIs between 0.48 and 0.93 µM) and hCA XII (KIs between 0.44 and 1.1 µM) inhibitory actions. Interestingly, none of the coumarins had any inhibitory effect on the off-target hCA I and II isoforms. The sub-micromolar compounds from the biochemical assay, coumarins 10a, 10 h and 11a-c, were assessed in an in vitro antiproliferative assay, and then the most potent antiproliferative agent 11a was tested to explore its impact on the cell cycle phases and apoptosis in MCF-7 breast cancer cells to provide more insights into the anticancer activity of these compounds.


Assuntos
Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Cumarínicos/farmacologia , Descoberta de Drogas , Tiazolidinedionas/farmacologia , Antígenos de Neoplasias/metabolismo , Apoptose/efeitos dos fármacos , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/química
8.
J Enzyme Inhib Med Chem ; 37(1): 2191-2205, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35975321

RESUMO

New quinoline and isatin derivatives having the main characteristics of VEGFR-2 inhibitors was synthesised. The antiproliferative effects of these compounds were estimated against A549, Caco-2, HepG2, and MDA-MB-231. Compounds 13 and 14 showed comparable activities with doxorubicin against the Caco-2 cells. These compounds strongly inhibited VEGFR-2 kinase activity. The cytotoxic activities were evaluated against Vero cells. Compound 7 showed the highest value of safety and selectivity. Cell migration assay displayed the ability of compound 7 to prevent healing and migration abilities in the cancer cells. Furthermore, compound 7 induced apoptosis in Caco-2 through the expressive down-regulation of the apoptotic genes, Bcl2, Bcl-xl, and Survivin, and the upregulation of the TGF gene. Molecular docking against VEGFR-2 emerged the interactions of the synthesised compounds in a similar way to sorafenib. Additionally, seven molecular dynamics simulations studies were applied and confirmed the stability of compound 13 in the active pocket of VEGFR-2 over 100 ns.


Assuntos
Antineoplásicos , Isatina , Quinolinas , Animais , Antineoplásicos/farmacologia , Células CACO-2 , Proliferação de Células , Chlorocebus aethiops , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isatina/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Células Vero
9.
Arch Pharm (Weinheim) ; 355(2): e2100359, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34862634

RESUMO

Twelve new triazolo[4,3-a]quinoxaline-based compounds are reported as anticancer agents with potential effects against vascular endothelial growth factor receptor-2 (VEGFR-2), using sorafenib as a reference molecule. With sorafenib as the positive control, the antiproliferative effects of the synthesized compounds against MCF-7 and HepG2 cells, as well as their VEGFR-2-inhibitory activities, were assessed. The most powerful VEGFR-2 inhibitor was compound 14a, which had an IC50 value of 3.2 nM, which is very close to that of sorafenib (IC50 = 3.12 nM). Furthermore, compounds 14c and 15d showed potential inhibitory activity against VEGFR-2, with IC50 values of 4.8 and 5.4 nM, respectively. Compound 14a caused apoptosis in HepG2 cells and stopped the cell cycle at the G2/M phase. In HepG2 cells, it also increased the levels of the proteases caspase-3 and caspase-9, as well as the Bax/Bcl-2 ratio. In silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) and toxicity experiments revealed that the synthesized agents had acceptable drug-likeness.


Assuntos
Antineoplásicos/farmacologia , Quinoxalinas/farmacologia , Triazóis/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Simulação por Computador , Feminino , Células Hep G2 , Humanos , Concentração Inibidora 50 , Células MCF-7 , Camundongos , Quinoxalinas/síntese química , Quinoxalinas/química , Ratos , Sorafenibe/farmacologia , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
10.
Molecules ; 27(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956997

RESUMO

This work is one of our efforts to discover potent anticancer agents. We modified the most promising derivative of our previous work concerned with the development of VEGFR-2 inhibitor candidates. Thirteen new compounds based on benzoxazole moiety were synthesized and evaluated against three human cancer cell lines, namely, breast cancer (MCF-7), colorectal carcinoma (HCT116), and hepatocellular carcinoma (HepG2). The synthesized compounds were also evaluated against VEGFR-2 kinase activity. The biological testing fallouts showed that compound 8d was more potent than standard sorafenib. Such compound showed IC50 values of 3.43, 2.79, and 2.43 µM against the aforementioned cancer cell lines, respectively, compared to IC50 values of 4.21, 5.30, and 3.40 µM reported for sorafenib. Compound 8d also was found to exert exceptional VEGFR-2 inhibition activity with an IC50 value of 0.0554 µM compared to sorafenib (0.0782 µM). In addition, compound 8h revealed excellent cytotoxic effects with IC50 values of 3.53, 2.94, and 2.76 µM against experienced cell lines, respectively. Furthermore, compounds 8a and 8e were found to inhibit VEGFR-2 kinase activity with IC50 values of 0.0579 and 0.0741 µM, exceeding that of sorafenib. Compound 8d showed a significant apoptotic effect and arrested the HepG2 cells at the pre-G1 phase. In addition, it exerted a significant inhibition for TNF-α (90.54%) and of IL-6 (92.19%) compared to dexamethasone (93.15%). The molecular docking studies showed that the binding pattern of the new compounds to VEGFR-2 kinase was similar to that of sorafenib.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Apoptose , Benzoxazóis/química , Proliferação de Células , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Sorafenibe/farmacologia , Relação Estrutura-Atividade
11.
Bioorg Med Chem ; 46: 116384, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34479065

RESUMO

Tumor angiogenesis is mainly regulated by VEGFR-2. In this study, a new series of [1,2,4]triazolo[4,3-a]quinoxaline based-derivatives has been designed and synthesized to develop new anti-proliferative and anti-VEGFR-2 members. Anti-proliferative activities of the synthesized compounds were tested against MCF-7 and HepG2 cell lines. Compound 19a exhibited the highest activity towards both MCF-7 and HepG2 cell lines (IC50 = 8.2 and 5.4 µM, respectively), compared to sorafenib (IC50 = 3.51 and 2.17 µM, respectively). Additionally, all compounds were screened to evaluate their effect as VEGFR-2 inhibitors. Compound 19a (IC50 = 3.4 nM) exhibited good activity compared to sorafenib (IC50 = 3.12 nM). Furthermore, compound 19a disrupted the HepG2 cell cycle by arresting the G2/M phase. Also, marked increase in the percentage apoptotic cells was achieved by compound 19a. The induced apoptotic effect of compound 19a in HepG2 cells was assured by increased pro-apoptotic marker (Bax) expression by 2.33-fold and decreased anti-apoptotic (Bcl-2) expression by 1.88-fold, resulting in an elevation of the Bax/Bcl-2 ratio in HepG2 cells. Comparing to the control cells, compound 19a induced an increase in expression of cleaved caspase-3 and caspase-9 by 2.44- and 2.69-fold, respectively. Finally, the binding modes of the target derivatives were investigated through docking studies against the proposed molecular target (VEGFR-2, PDB ID: 2OH4).


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinoxalinas/farmacologia , Triazóis/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Bioorg Med Chem ; 29: 115872, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33214036

RESUMO

Inhibiting VEGFR-2 has been set up as a therapeutic strategy for treatment of cancer. Thus, nineteen new quinazoline-4(3H)-one derivatives were designed and synthesized. Preliminary cytotoxicity studies of the synthesized compounds were evaluated against three human cancer cell lines (HepG-2, MCF-7 and HCT-116) using MTT assay method. Doxorubicin and sorafenib were used as positive controls. Five compounds were found to have promising cytotoxic activities against all cell lines. Compound 16f, containing a 2-chloro-5-nitrophenyl group, has emerged as the most active member. It was approximately 4.39-, 5.73- and 1.96-fold more active than doxorubicin and 3.88-, 5.59- and 1.84-fold more active than sorafenib against HepG2, HCT-116 and MCF-7 cells, respectively. The most active cytotoxic agents were further evaluated in vitro for their VEGFR-2 inhibitory activities. The results of in vitro VEGFR-2 inhibition were consistent with that of the cytotoxicity data. Molecular docking of these compounds into the kinase domain, moreover, supported the results.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinazolinonas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinonas/síntese química , Quinazolinonas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Bioorg Chem ; 112: 104949, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34023640

RESUMO

A new series of bis([1,2,4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives were designed and synthesized to have the main essential pharmacophoric features of VEGFR-2 inhibitors. VEGFR-2 inhibitory activities were assessed for the designed compounds. In addition, cytotoxic activity was evaluated for all derivatives against two human cancer cell lines namely, HepG-2 and MCF-7. The most cytotoxic compound 20 h was subjected to further biological investigations including cell cycle, apoptosis, caspase-3, caspase-9, BAX, and Bcl-2 analyses. Different in silico studies as docking, ADMET and toxicity were carried out. The results exhibited that compounds 20b, 20e, 20h and20mshowed promising VEGFR-2 inhibitory activities with IC50values of 5.7, 6.7, 3.2, and 3.1 µM, respectively. Moreover, these promising members exhibited the highest antiproliferative activities against the two cell lines with IC50values ranging from 3.3 to 14.2 µM, comparing to sorafenib (IC50 = 2.17 and 3.43 µM against HepG2 and MCF-7, respectively). Additionally, compound 20h induced cell cycle arrest of HepG2 cells at G2/M phase. Also, such compound increased the progress of apoptosis by 3.5-fold compared to the control. As well, compound 20h showed a significant increase in the level of caspase-3 (2.07-fold), caspase-9 (1.72-fold), and BAX (1.83-fold), and a significant decrease in Bcl-2 level (1.92-fold). The in silico studies revealed that the synthesized compounds have binding pattern like that of sorafenib.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinoxalinas/farmacologia , Triazóis/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
Bioorg Chem ; 112: 104947, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964580

RESUMO

Vascular endothelial growth factor-2 (VEGFR-2) is considered one of the most important factors in tumor angiogenesis, and consequently a number of anticancer therapeutics have been developed to inhibit VEGFR-2 signaling. Accordingly, eighteen derivatives of thieno[2,3-d]pyrimidines having structural characteristics similar to VEGFR-2 inhibitors were designed and synthesized. Anticancer activities of the new derivatives were assessed against three human cancer cell lines (HCT-116, HepG2, and MCF-7) using MTT. Sorafenib was used as positive control. Compounds 17c-i, and 20b showed excellent anticancer activities against HCT-116 and HepG2 cell lines, while compounds 17i and 17g was found to be active against MCF-7 cell line. Compound 17f exhibited the highest cytotoxic activities against the examined cell lines, HCT-116 and HepG2, with IC50 values of 2.80 ± 0.16 and 4.10 ± 0.45 µM, respectively. Aiming at exploring the mechanism of action of these compounds, the most active cytotoxic derivatives were in vitro tested for their VEGFR-2 inhibitory activity. Compound 17f showed high activity against VEGFR-2 with an IC50 value of 0.23 ± 0.03 µM, that is equal to that of reference, sorafenib (IC50 = 0.23 ± 0.04 µM). Molecular docking studies also were performed to investigate the possible binding interactions of the target compounds with the active sites of VEGFR-2. The synthesized compounds were analyzed for their ADMET and toxicity properties. Results showed that most of the compounds have low to very low BBB penetration levels and they have non-inhibitory effect against CYP2D6. All compounds were predicted to be non-toxic against developmental toxicity potential model except compounds 17b and 20b.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Bioorg Chem ; 110: 104807, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33721808

RESUMO

New series of [1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one and [1,2,4]triazolo[4,3-a]quinoxaline derivatives have been designed, synthesized, and biologically assessed for their anti-proliferative activities against two selected tumor cell lines MCF-7 and HepG2. Comparing to sorafenib (IC50 = 2.17 ± 0.13 and 3.51 ± 0.21 µM against MCF-7 and HepG2, respectively), compound 25d, 25e, 25i, and 27e exhibited the highest activities against the examined cell lines with IC50 values extending from 4.1 ± 0.4 to 11.7 ± 1.1 µM. Furthermore, VEGFR-2 inhibitory activities were assessed for all the synthesized compounds as potential mechanisms for their anti-proliferative activities. Compounds 25d, 25e, 25i, and 27e displayed prominent inhibitory efficiency versus VEGFR-2 kinase with IC50 value ranging from 3.4 ± 0.3 to 6.8 ± 0.5 nM. Fascinatingly, the results of VEGFR-2 inhibitory assays were matched with that of the cytotoxicity data, where the most potent anti-proliferative derivatives exhibited promising VEGFR-2 inhibitory activities. Further studies displayed the ability of compound 25d to induce apoptosis in HepG2 cells and can arrest the growth of such cells at the G2/M phase. Also, compound 25d produced a significant increase in the level of BAX/Bcl-2 ratio (3.8-fold), caspase- 3 (1.8-fold), and caspase-9 (1.9-fold) compared to the control cells. Molecular docking studies were carried out to investigate the possible binding interaction inside the active site of the VEGFR-2.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinoxalinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
Bioorg Chem ; 107: 104532, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33334586

RESUMO

A series of new VEGFR-2 inhibitors were designed, synthesized and evaluated for their anti-proliferative activities against hepatocellular carcinoma (HepG-2 cell line). Compound 29b (IC50 = 4.33 ± 0.2 µg/ml) was found to be the most potent derivative as it has showed to be more active than doxorubicin (IC50 = 4.50 ± 0.2 µg/ml) and 78% of sorafenib activity (IC50 = 3.40 ± 0.25 µg/ml). The inhibitory profiles against VEGFR-2 were also assessed for the most promising candidates (16b, 20c, 22b, 24a, 24b, 28c, 28e, 29a, 29b and 29c). Compounds 29b, 29c and 29a exhibited potent inhibitory activities towards VEGFR-2 at IC50 values of 3.1 ± 0.04, 3.4 ± 0.05 and 3.7 ± 0.06 µM, respectively, comparing sorafenib (IC50 = 2.4 ± 0.05 µM). Furthermorer, compound 29b induced apoptosis and arrested the cell cycle growth at G2/M phase. Additionally, in vivo antitumor experiments revealed that compounds 29b and 29c have significant tumor growth inhibition. The test of immuno-histochemical expression of activated caspase-3 revealed that there is a time-dependent increase in cleaved caspase-3 protein expression upon exposure of HepG-2 cells to compound 29b. Moreover, the fibroblastic proliferative index test revealed that compound 29b could attenuate liver fibrosis. Docking studies also supported the results concluded from the biological screening via prediction of the possible binding interactions of the target compounds with VEGFR-2 active sites using the crystal structure of VEGFR-2 downloaded from the Protein Data Bank, (PDB ID: 2OH4) using Discovery Studio 2.5 software. Further structural optimization of the most active candidates may serve as a useful strategy for getting new lead compounds in search for powerful and selective antineoplastic agents.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinonas/uso terapêutico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Quinazolinonas/síntese química , Quinazolinonas/metabolismo , Quinazolinonas/farmacocinética , Ratos , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Arch Pharm (Weinheim) ; 354(6): e2000456, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33554352

RESUMO

A new series of triazolophthalazine derivatives was designed and synthesized as topoisomerase II (Topo II) inhibitors and DNA intercalators. The synthesized derivatives were evaluated in vitro for their cytotoxic activities against three human cancer cell lines: HepG2, MCF-7, and HCT-116 cells. Compound IXb was the most potent counterpart with IC50 values of 5.39 ± 0.4, 3.81 ± 0.2, and 4.38 ± 0.3 µM, as it was about 1.47, 1.77, and 1.19 times more active than doxorubicin (IC50 = 7.94 ± 0.6, 6.75 ± 0.4, and 5.23 ± 0.3 µM) against HepG2, MCF-7, and HCT-116 cells, respectively. Additionally, the binding affinity of the synthesized compounds toward the DNA molecule was assessed using the DNA/methyl green assay. Compound IXb showed an excellent DNA binding affinity with an IC50 value of 27.16 ± 1.2 µM, which was better than that of the reference drug doxorubicin (IC50 = 31.02 ± 1.80 µM). Moreover, compound IXb was the most potent member among the tested compounds when investigated for their Topo II inhibitory activity. Furthermore, compound IXb induced apoptosis in HepG2 cells and arrested the cell cycle at the G2/M phase. Additionally, compound IXb showed Topo II poisoning effects at 2.5 µM and Topo II catalytic inhibitory effects at 5 and 10 µM. Finally, molecular docking studies were carried out against the DNA-Topo II complex and DNA, to investigate the binding patterns of the designed compounds.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Ftalazinas , Quinoxalinas , Inibidores da Topoisomerase II , Triazóis , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Ftalazinas/química , Ftalazinas/farmacologia , Quinoxalinas/síntese química , Quinoxalinas/química , Quinoxalinas/farmacologia , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Triazóis/química , Triazóis/farmacologia
18.
Arch Pharm (Weinheim) ; 354(2): e2000279, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33073374

RESUMO

The anticancer activity of novel thiazolidine-2,4-diones was evaluated against HepG2, HCT-116, and MCF-7 cells. MCF-7 was the most sensitive cell line to the cytotoxicity of the new derivatives. In particular, compounds 18, 12, 17, and 16 were found to be the most potent derivatives over all the tested compounds against the cancer cell lines HepG2, HCT116, and MCF-7, with IC50 = 9.16 ± 0.9, 8.98 ± 0.7, 5.49 ± 0.5 µM; 9.19 ± 0.5, 8.40 ± 0.7, 6.10 ± 0.4 µM; 10.78 ± 1.2, 8.87 ± 1.5, 7.08 ± 1.6 µM; and 10.87 ± 0.8, 9.05 ± 0.7, 7.32 ± 0.4 µM, respectively. Compounds 18 and 12 have nearly the same activities as sorafenib (IC50 = 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively), against HepG2 cells, but slightly lower activity against HCT116 cells and slightly higher activity against the MCF-7 cancer cell line. Also, these compounds displayed lower activities than doxorubicin against HepG2 and HCT-116 cells but higher activity against MCF-7 cells (IC50 = 7.94 ± 0.6, 8.07 ± 0.8, and 6.75 ± 0.4 µM, respectively). In contrast, compounds 17 and 16 exhibited lower activities than sorafenib against HepG2 and HCT116 cells, but nearly equipotent activity against the MCF-7 cancer cell line. Also, these compounds displayed lower activities than doxorubicin against the three cell lines. All the synthesized derivatives 7-18 were evaluated for their inhibitory activities against VEGFR-2. The tested compounds displayed high to medium inhibitory activity, with IC50 values ranging from 0.17 ± 0.02 to 0.27 ± 0.03 µM. Compounds 18, 12, 17, and 16 potently inhibited VEGFR-2 at IC50 values of 0.17 ± 0.02, 0.17 ± 0.02, 0.18 ± 0.02, and 0.18 ± 0.02 µM, respectively, which are nearly more than half of that of the IC50 value for sorafenib (0.10 ± 0.02 µM).


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Tiazolidinedionas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Org Biomol Chem ; 18(38): 7608-7634, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32959865

RESUMO

A new series of pyrimidine-5-carbonitrile derivatives has been designed as ATP mimicking tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR). These compounds were synthesized and evaluated for their in vitro cytotoxic activities against a panel of four human tumor cell lines, namely colorectal carcinoma (HCT-116), hepatocellular carcinoma (HepG-2), breast cancer (MCF-7), and non-small cell lung cancer cells (A549). Five of the synthesized compounds, 11a, 11b, 12b, 15b and 16a, were found to exhibit moderate antiproliferative activity against the tested cell lines and were more active than the EGFR inhibitor erlotinib. In particular, compound 11b showed 4.5- to 8.4-fold erlotinib activity against HCT-116, HepG-2, MCF-7, and A549 cells with IC50 values of 3.37, 3.04, 4.14, and 2.4 µM respectively. Moreover, the most cytotoxic compounds that showed promising IC50 values against the four cancer cell lines were subjected to further investigation for their kinase inhibitory activities against EGFRWT and EGFRT790M using homogeneous time resolved fluorescence (HTRF) assay. Compound 11b was also found to be the most active compound against both EGFRWT and mutant EGFRT790M, exhibiting IC50 values of 0.09 and 4.03 µM, respectively. The cell cycle and apoptosis analyses revealed that compound 11b can arrest the cell cycle at the G2/M phase and induce significant apoptotic effects in HCT-116, HepG-2, and MCF-7 cells. Additionally, compound 11b upregulated the level of caspase-3 by 6.5 fold in HepG-2 when compared with the control. Finally, molecular docking studies were carried out to examine the binding mode of the synthesized compounds against the proposed targets; EGFRWT and EGFRT790M. Additional in silico ADMET studies were performed to explore drug-likeness properties.


Assuntos
Receptores ErbB
20.
Bioorg Chem ; 105: 104380, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128967

RESUMO

Sixteen novel quinazoline-based derivatives were designed and synthesized via modification of the VEGFR-2 reported inhibitor 7 in order to increase the binding affinity of the designed compounds to the receptor active site. The designed compounds were evaluated for their VEGFR-2 inhibitory effects. Inhibiting VEGFR-2 has been set up as a therapeutic strategy for treatment of cancer. The bioactivity of the new compounds was performed against HepG-2, MCF-7 and HCT-116 cell lines. Doxorubicin and sorafenib were used as positive controls. Compound 18d was observed to have promising cytotoxic activity (IC50 = 3.74 ± 0.14, 5.00 ± 0.20 and 6.77 ± 0.27 µM) in comparison to the reference drug doxorubicin (IC50 = 8.28, 9.63 and 7.67 µM) and sorafenib (IC50 = 7.31, 9.40 and 7.21 µM). The most active compounds were tested for their in vitro VEGFR-2 inhibitory activities. Results of VEGFR-2 inhibition were consistent with that of the cytotoxicity data. Thus, compound 18d showed VEGFR-2 inhibitory activity (IC50 = 0.340 ± 0.04 µM) superior to that of the reference drug, sorafenib (IC50 = 0.588 ± 0.06 µM). Furthermore, docking study was performed in order to understand the binding pattern of the new compounds into VEGFR-2 active site. Docking results attributed the potent VEGFR-2 inhibitory effect of the new compounds as they bound to the key amino acids in the active site, Glu883 and Asp1044, as well as their hydrophobic interaction with the receptor hydrophobic pocket. Results of cytotoxic activities, in vitro VEGFR-2 inhibition together with docking study argument the advantages of the synthesized analogues as promising anti-angiogenic agents.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Quinazolinonas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinonas/síntese química , Quinazolinonas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA