Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 38(11): 213, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053362

RESUMO

The soils of Lakshadweep Islands are formed as a result of the fragmentation of coral limestone, that is carbonate-rich, with neutral pH, but poor in plant nutrients. Coconut palm (Cocos nucifera L.) is the main crop cultivated, supporting the life and livelihood of the islanders. No external fertilizer application or major plant protection measures are adopted for their cultivation as the Islands were declared to go organic decades back. Yet, Lakshadweep has one of the highest productivity of coconut compared with other coconut growing areas in India. Therefore, a question arises: how is such a high coconut productivity sustained? We try to answer by estimating in three main islands (i) the nutrients added to the soil via the litter generated by coconut palms and (ii) the role of soil microbiota, including arbuscular mycorrhizae, for the high productivity. Our results indicated that, besides adding a substantial quantum of organic carbon, twice the needed amount of nitrogen, extra 20% phosphorus to the already P-rich soils, 43-45% of potassium required by palms could be easily met by the total coconut biomass residues returned to the soil. Principal Component Analysis showed that soil organic carbon %, potassium, and organic carbon added via the palm litter and AM spore load scored >± 0.95 in PC1, whereas, available K in the soil, bacteria, actinomycetes, phosphate solubilizers and fluorescent pseudomonads scored above >± 0.95 in PC2. Based on our analysis, we suggest that the autochthonous nutrients added via the coconut biomass residues, recycled by the soil microbial communities, could be one of the main reasons for sustaining a high productivity of the coconut palms in Lakshadweep Islands, in the absence of any external fertilizer application, mimicking a semi-closed-loop forest ecosystem.


Assuntos
Fertilizantes , Microbiota , Carbono/análise , Cocos , Fertilizantes/análise , Nitrogênio/análise , Nutrientes/análise , Plantas , Potássio/análise , Solo/química , Microbiologia do Solo
2.
3 Biotech ; 14(4): 104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38464612

RESUMO

The basal stem rot disease incidence ranged from 0 to 5% in Karnataka India during the year 2019-20. Twenty pathogenic isolates of Ganoderma sp varied with cultural characteristics and virulence on coconut seedlings of the variety Tipatur Tall. The identity of each isolate was confirmed through morphological characters and through ITS sequencing. Two isolates viz., G4 and G5 were identified as Ganoderma applanatum and remaining all isolates were identified as G. lucidum. The genetic diversity analysis of Ganoderma isolates was done using ten Random Amplified Polymorphic DNA (RAPD) and fifteen Inter Simple Sequence Repeat (ISSR) primers. Among the ten RAPD primers, only eight primers recorded polymorphism (33.30-66.70%). The primer SBS-Q3 exhibited the highest polymorphism of 66.70%. In case of ISSR primers, all primers recorded polymorphism (33.30-60.00%). The primer UBC866 was the most polymorphic primer with 60.0% polymorphism. RAPD and ISSR markers were compared for their efficacy in assessing the genetic diversity by taking the band frequency, Shannon's index, polymorphic information content, resolving power, and mean resolving power into consideration, and it was concluded that ISSR was marker of choice over RAPD. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03872-w.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA