Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells Tissues Organs ; 210(3): 195-217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34280918

RESUMO

Sepsis-associated acute lung injury (ALI) is a critical condition characterized by severe inflammatory response and mitochondrial dysfunction. Coenzyme Q10 (CoQ10) and aescin (AES) are well-known for their anti-inflammatory activities. However, their effects on lipopolysaccharide (LPS)-induced lung injury have not been explored yet. Here, we asked whether combined pretreatment with CoQ10 and AES synergistically prevents LPS-induced lung injury. Fifty male rats were randomized into 5 groups: (1) control; (2) LPS-treated, rats received a single i.p. injection of LPS (8 mg/kg); (3) CoQ10-pretreated, (4) AES-pretreated, or (5) combined-pretreated; animals received CoQ10 (100 mg/kg), AES (5 mg/kg), or both orally for 7 days before LPS injection. Combined CoQ10 and AES pretreatment significantly reduced lung injury markers; 52.42% reduction in serum C-reactive protein (CRP), 53.69% in alkaline phosphatase (ALKP) and 60.26% in lactate dehydrogenase (LDH) activities versus 44.58, 37.38, and 48.6% in CoQ10 and 33.81, 34.43, and 39.29% in AES-pretreated groups, respectively. Meanwhile, combination therapy significantly reduced interleukin (IL)-1ß and tumor necrosis factor (TNF)-α expressions compared to monotherapy (p < 0.05). Additionally, combination therapy prevented LPS-induced histological and mitochondrial abnormalities greater than separate drugs. Western blotting indicated that combination therapy significantly suppressed nucleotide-binding oligomerization domain (NOD)-like receptors-3 (NLRP-3) inflammasome compared to separate drugs (p < 0.05). Further, combination therapy significantly decreased the expression of signaling cascades, p38 mitogen-activated protein kinases (p38 MAPK), nuclear factor kappa B (NF-κB)-p65, and extracellular-regulated kinases 1/2 (ERK1/2) versus monotherapy (p < 0.05). Interestingly, combined pretreatment significantly downregulated high mobility group box-1 (HMGB1) by 72.93%, and toll-like receptor 4 (TLR4) by -0.93-fold versus 61.92%, -0.83-fold in CoQ10 and 38.67%, -0.70-fold in AES pretreatment, respectively. Our results showed for the first time that the enhanced anti-inflammatory effect of combined CoQ10 and AES pretreatment prevented LPS-induced ALI via suppression of NLRP-3 inflammasome through regulation of HMGB1/TLR4 signaling pathway and mitochondrial stabilization.


Assuntos
Lesão Pulmonar Aguda , Sepse , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Animais , Escina , Lipopolissacarídeos , Masculino , NF-kappa B , Ratos , Sepse/complicações , Sepse/tratamento farmacológico , Ubiquinona/análogos & derivados
2.
Cells Tissues Organs ; 208(3-4): 158-176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32369804

RESUMO

Statins are the most widely prescribed cholesterol-lowering drugs to reduce the risk of cardiovascular diseases. Statin-induced myopathy is the major side effect of this class of drugs. Here, we studied whether standardized leaf extracts of ginkgo biloba (EGb761) would improve simvastatin (SIM)-induced muscle changes. Sixty Wistar rats were allotted into six groups: control group, vehicle group receiving 0.5% carboxymethyl cellulose (CMC) for 30 days, SIM group receiving 80 mg/kg/day SIM in 0.5% CMC orally for 30 days, SIM withdrawal group treated with SIM for 16 days and sacrificed 14 days later, and EGb761-100 and EGb761-200 groups posttreated with either 100 or 200 mg/kg/day EGb761 orally. Muscle performance on the rotarod, serum creatine kinase (CK), coenzyme Q10 (CoQ10), serum and muscle nitrite, muscle malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) activities were estimated. Additionally, muscle samples were processed for histopathological evaluation. We found that SIM decreased muscle performance on the rotarod, serum CoQ10, as well as muscle SOD and CAT activities while it increased serum CK, serum and muscle nitrite, as well as muscle MDA levels. SIM also induced sarcoplasmic vacuolation, splitting of myofibers, disorganization of sarcomeres, and disintegration of myofilaments. In contrast, posttreatment with EGb761 increased muscle performance, serum CoQ10, as well as muscle SOD and CAT activities while it reduced serum CK as well as serum and muscle nitrite levels in a dose-dependent manner. Additionally, EGb761 reversed SIM-induced histopathological changes with better results obtained by its higher dose. Interestingly, SIM withdrawal increased muscle performance on the rotarod, reduce serum CK and CoQ10, and reduced serum and muscle nitrite while it reversed SIM-induced histopathological changes. However, SIM withdrawal was not effective enough to restore their normal values. Additionally, SIM withdrawal did not improve SIM-induce muscle MDA, SOD, or CAT activities during the period studied. Our results suggest that EGb761 posttreatment reversed SIM-induces muscle changes possibly through its antioxidant effects, elevation of CoQ10 levels, and antagonizing mitochondrial damage.

3.
Anat Rec (Hoboken) ; 304(3): 647-661, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32589351

RESUMO

Methotrexate (MTX) is a widely used chemotherapeutic agent; nevertheless, the nephrotoxicity associated with its use has limited its clinical use. Rebamipide (REB) is a gastro-protective agent with diverse promising biological activities. Here, we investigated the renoprotective effects of REB against MTX-induced nephrotoxicity in rats. Male Wistar rats were allocated into four groups: the normal control group, the REB group (100 mg kg-1 day-1 , PO, for 12 days), the MTX group (which received a single injection of 20 mg/kg, ip), and the REB + MTX group (which received 100 mg kg-1 day-1 REB for 7 days before and 5 days after being injected with 20 mg/kg MTX). Interestingly, MTX triggered kidney injury, characterized by renal dysfunction along with histopathological alterations. Moreover, increased reactive oxygen species level and inflammatory response were detected in the kidney of MTX-treated rats. However, REB prevented MTX-induced oxidative kidney injury and boosted an antioxidant balance. Mechanistically, REB markedly activated the NRF-2 protein and upregulated the expression of both SIRT-1 and FOXO-3 genes. Additionally, REB administration strongly inhibited the inflammatory response by downregulating both NF-κB-p65 and TLR-4. Finally, the coadministration of REB and MTX activated the mTOR/PI3K/AKT signaling pathway. Simultaneously, REB treatment attenuated the reduction in glomerular size, the widening of the capsular spaces, and the tubular cell damage due to MTX administration. Taken together, these results indicate the potential of REB as adjuvant therapy to prevent nephrotoxicity in patients receiving MTX treatment.


Assuntos
Alanina/análogos & derivados , Antioxidantes/uso terapêutico , Inflamação/metabolismo , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Metotrexato/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Quinolonas/farmacologia , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Antimetabólitos Antineoplásicos/efeitos adversos , Antioxidantes/farmacologia , Rim/metabolismo , Nefropatias/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Quinolonas/uso terapêutico , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Life Sci ; 254: 117760, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32418889

RESUMO

AIM: The present study focused on the possible underlying protective mechanisms of UDCA against GNT-induced hepatic injury. METHODS: For achieving this goal, adult male rats were allocated into 4 groups: normal control (received vehicle), GNT (100 mg/kg, i.p. for 8 days), UDCA (60 mg/kg, P.O. for 15 days), and GNT + UDCA (received UDCA for 15 days and GNT started from the 7th day and lasted for 8 days). RESULTS: The results revealed that UDCA significantly improved GNT-induced hepatic injury, oxidative stress, apoptosis, and inflammatory response. Interestingly, UDCA inhibited apoptosis by marked down-regulation of the Bax gene, Caspase-3, and cleaved Caspase-3 protein expressions while the level of Bcl-xL gene significantly increased. Moreover, UDCA strongly inhibited the inflammatory response through the down-regulation of both NF-κB-p65 and TNF-α accompanied by IL-10 elevation. Furthermore, the obtained results ended with the restored of mitochondria function that confirmed by electron microscopy. Histological analysis showed that UDCA remarkably ameliorated the histopathological changes induced by GNT. SIGNIFICANCE: UDCA may be a promising agent that can be used to prevent hepatotoxicity observed in GNT treatment. This effect could be attributed to, at least in part, the ability of UDCA to modulate NF-κB-p65/TNF-α, Bax/Bcl-xl/Caspase-3, and eNOS/iNOS signaling pathways.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Gentamicinas/antagonistas & inibidores , Gentamicinas/toxicidade , Hepatócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ácido Ursodesoxicólico/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Interações Medicamentosas , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
5.
Tissue Cell ; 60: 1-13, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31582012

RESUMO

Coenzyme Q10 (CoQ10) is a component of the mitochondrial electron transport chain and regarded as a strong anti-oxidant agent. In this study, we focused on the mechanistic insights involved in the hepato-protective effects of CoQ10 against hepatic ischemia reperfusion (IR) injury. Our results revealed that CoQ10 significantly improved hepatic dysfunctions and oxidative stress caused by IR injury. Interestingly, as compared to IR subjected rat, CoQ10 inhibited apoptosis by marked down-regulation of both Bax and PUMA genes while the level of Bcl-2 gene was significantly increased. Moreover, CoQ10 up-regulated PI3K, Akt and mTOR protein expressions while it inhibited the expression of both GSK-3ß and ß-catenin. Additionally, CoQ10 restored oxidant/antioxidant balance via marked activated Nrf-2 protein as well as up-regulation of both Sirt-1 and FOXO-3 genes. Moreover, CoQ10 strongly inhibited inflammatory response through down-regulation of NF-κB-p65 and decrease both JAK1 and STAT-3 protein expressions with a subsequent modulating circulating inflammatory cytokines. Furthermore, histopathological analysis showed that CoQ10 remarkably ameliorated the histopathological damage induced by IR injury. Taken together, our results suggested and proved that CoQ10 provided a hepato-protection against hepatic IR injury via inhibition of apoptosis, oxidative stress, inflammation and their closed related pathways.


Assuntos
Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ubiquinona/análogos & derivados , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/fisiopatologia , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Traumatismo por Reperfusão/patologia , Ubiquinona/farmacologia , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA