Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(19): 8510-8517, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34402623

RESUMO

MXenes, two-dimensional metal carbides or nitrides with multifunctional surfaces, are one of the most promising antibacterial nanoscale materials. However, their putative bactericidal mechanism is elusive. To study their bactericidal mechanism, we investigated the interaction between a MXene nanosheet and a model bacterial membrane by molecular dynamics simulations and found that an adsorbed MXene on a membrane surface induced a local phase transition in a domain where the fluidity of the phospholipid in this domain at room temperature was comparable with that of the gel phase. The domain also showed a denser and thinner phospholipid membrane structure than the peripheral phospholipids. By comparing it with our previous experiments of the bactericidal activity of MXenes, we proposed the leakage of intercellular molecules at the phase boundary defects as a possible bactericidal mechanism of MXenes that leads to cell lysis. This study provides a useful model for tailoring new bactericidal nanomaterials.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Antibacterianos/farmacologia , Transição de Fase , Fosfolipídeos
2.
Environ Res ; 193: 110443, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33171120

RESUMO

The rapid transmission tendency, severity, and wide geographical spread of newly emerged novel coronavirus (SARS-CoV-2) in different environmental matrices, including water, air, and soil, has posed severe health, environmental, energy, and economic challenges worldwide. Despite the severe health effects, unprecedented improvements in air quality in many countries due to emergency measures, and public behavior changes have been reported. SARS-CoV-2 has been detected in air and sewage samples in several studies across the globe. The use of wastewater-based epidemiology (WBE) could be a valuable method to monitor the outbreak of COVID-19, which requires fast and reliable methods for virus detection in sewage. However, water treatment companies face many pressures due to potential for aerosolization, PPE shortages, and changed usage patterns. In addition, the unprecedented impact of the COVID-19 outbreak on the worldwide economy especially the energy sector, and its impact on our ecosystem required instant responses. This article discusses the recent developments and challenges faced in water, air, and energy resources, including renewables and non-renewables as the significant and interrelated components of the ecosystem. Furthermore, some recommendations have been directed, which may serve as a guideline to the scientists, legislators, and other stakeholders. A future roadmap has been proposed to overcome the tragic effects of COVID-19 and developing a sustainable environmental system to minimize the impact of such infectious outbreaks in the future.


Assuntos
COVID-19 , Pandemias , Ecossistema , Humanos , SARS-CoV-2 , Esgotos
3.
Langmuir ; 34(38): 11325-11334, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30169960

RESUMO

Two-dimensional heterostructures, such as Fe2O3/MXene nanoparticles, can be attractive anode materials for lithium-ion batteries (LIBs) due to the synergy between high lithium-storage capacity of Fe2O3 and stable cyclability and high conductivity provided by MXene. Here, we improved the storage performance of Ti3C2T x (MXene)/Fe2O3 nanocomposite by confining Fe2O3 nanoparticles into Ti3C2T x nanosheets with different mixing ratios using a facile and scalable dry ball-milling process. Composites of Ti3C2T x-25 wt % Fe2O3 and Ti3C2T x-50 wt % Fe2O3 synthesized by ball-milling resulted in uniform distribution of Fe2O3 nanoparticles on Ti3C2T x nanosheets with minimum oxidation of MXene as compared to composites prepared by hydrothermal or wet sonication. Moreover, the composites demonstrated minimum restacking of the nanosheets and higher specific surface area. Among all studied composites, the Ti3C2T x-50 wt % Fe2O3 showed the highest reversible specific capacity of ∼270 mAh g-1 at 1C (∼203 mAh g-1 based on the composite) and rate performance of 100 mAh g-1 at 10C. This can open the door for synthesizing stable and high-performance MXene/transition metal oxide composites with significantly enhanced electrochemical performance for LIB applications.

4.
Nanotechnology ; 29(10): 105405, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29384727

RESUMO

Hybrid organic photovoltaic (OPV) cells based on conjugated polymer photoactive materials are promising candidates for flexible, high-performance and low-cost energy sources owing to their inexpensive materials, cost-effective processing and ease of fabrication by simple solution processes. However, the modest PV performance obtained to date-in particular the low power conversion efficiency (PCE)-has impeded the large scale deployment of OPV cells. The low PCE in OPV solar cells is mainly attributed to the low carrier mobility, which is closely correlated to the transport diffusion length of the charge carriers within the photoactive layers. The 2D graphene material could be an excellent candidate for assisting charge transport improvement in the active layer of OPV cells, due to its huge carrier mobility, thermal and chemical stability, and its compatibility with the solution process. In this work, we report on the improvement of the optoelectronic properties and photovoltaic performance of graphene nanoplatelet (GNP)-doped P3HT:PCBM photoactive blended layers, integrated into a bulk heterojunction (BHJ) organic-photovoltaic-based device, using PEDOT:PSS on an ITO/glass substrate. First, the light absorption capacity was observed to increase with respect to the GNP content, while the photoluminescence showed clear quenching, indicating electron transfer between the graphene sheets and the polymeric matrix. Then, the incorporation of GNP into the BHJ active layer resulted in enhanced PV performance with respect to the reference cell, and the best PV performance was obtained with 3 wt.% of GNP loading, with an open-circuit voltage of 1.24 V, a short-circuit current density value of 6.18 mA cm-2, a fill factor of 47.12%, and a power conversion efficiency of about 3.61%. We believe that the obtained results contribute to the development of organic photovoltaic devices and to the understanding of the impact of sp2-bonded carbon therein.

5.
Electrochim Acta ; 235: 471-479, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29109588

RESUMO

An extensive characterization of pristine and oxidized Ti3C2Tx (T: =O, -OH, -F) MXene showed that exposure of MXene to an anodic potential in the aqueous solution oxidizes the nanomaterial forming TiO2 layer or TiO2 domains with subsequent TiO2 dissolution by F- ions, making the resulting nanomaterial less electrochemically active compared to the pristine Ti3C2Tx. The Ti3C2Tx could be thus applied for electrochemical reactions in a cathodic potential window i.e. for ultrasensitive detection of H2O2 down to nM level with a response time of approx. 10 s. The manuscript also shows electrochemical behavior of Ti3C2Tx modified electrode towards oxidation of NADH and towards oxygen reduction reactions.

6.
Opt Express ; 24(2): A174-9, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832571

RESUMO

The possibility of using surface enhanced Raman scattering (SERS) detection method for bromate-anion determination and quantitative evaluation in water has been demonstrated for the first time. The decreasing of Rhodamine 6G (R6G) Raman peaks intensity has been used as the analytical signal corresponding to the catalytic oxidation by bromate. Electrostatically immobilized silver nanoparticles have been proven as efficient SERS-active substrate. A linear relationship between the Raman intensity of Rh6G as a function of BrO(3)(-) was observed in the range of 0 - 10(-7) М and the detect limit was as low as 10(-10) M (nearly 0.01 µg/L). The results prove the potential of the proposed method for further application in the development of new portable SERS-based sensors for drinking water monitoring with high sensitivity, simplicity and the low cost.

7.
Water Sci Technol ; 72(10): 1780-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26540539

RESUMO

A new versatile electrochemical sensor based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin (L-MMS) modified glassy carbon electrode (GCE) was developed for the selective detection of trace trinitrotoluene (TNT) from aqueous media with high sensitivity. The fabricated magnetic microspheres were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). L-MMS films were cast on the GCE surface to fabricate the TNT sensing electrode. The limit of detection (LOD) of TNT determined by the amperometric i-t curve reached 35 pM. The lignin film and well packed Fe3O4/AuNPs facilitated the pre-concentration of trace TNT on the electrode surface resulting in a fast amperometric response of 3 seconds near the detection limit. The high sensitivity and excellent catalytic activity of the modified electrode could be attributed to the lignin layer and highly packed Fe3O4/AuNPs on the electrode surface. The total recovery of TNT from tapwater and seawater matrices was 98% and 96%, respectively. The electrode film was highly stable after five repeated adsorption/desorption cycles. The new electrochemical sensing scheme provides a highly selective, sensitive and versatile assay for the in-situ detection of TNT in complex water media.


Assuntos
Técnicas Eletroquímicas/métodos , Trinitrotolueno/análise , Poluentes Químicos da Água/análise , Acrilatos/química , Carbono/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Desenho de Equipamento , Ouro/química , Lignina/química , Limite de Detecção , Microscopia Eletrônica de Transmissão , Nanopartículas , Espectroscopia Fotoeletrônica , Poliestirenos/química , Sensibilidade e Especificidade , Dióxido de Silício/química
8.
Heliyon ; 10(9): e30267, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38711666

RESUMO

Wastewater-based epidemiology (WBE) has been proven effective for the monitoring of infectious disease outbreaks during mass gathering events and for timely public health interventions. As part of Qatar's efforts to monitor and combat the spread of infectious diseases during the FIFA World Cup Qatar 2022™ (FWC'22), wastewater surveillance was used to monitor the spread of SARS-CoV-2, human enterovirus, and poliovirus. The screening covered five major wastewater treatment plants servicing the event locations between October 2022 and January 2023. Viruses were concentrated from the wastewater samples by PEG precipitation, followed by qRT-PCR to measure the viral load in the wastewater. As expected, SARS-CoV-2 and enterovirus RNA were detected in all samples, while poliovirus was not detected. The concentration of SARS-CoV-2 was correlated with population density, such as areas surrounding the World Cup venues, and with the number of reported clinical cases. Additionally, we observed temporal fluctuations in viral RNA concentrations, with peak levels coinciding with the group stage matches of the FWC'22. This study has been useful in providing public health authorities with an efficient and cost-effective surveillance system for potential infectious disease outbreaks during mega-events.

9.
Analyst ; 138(9): 2712-9, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23515305

RESUMO

A new lignin modified hybrid microsphere, comprising poly(styrene-co-acrylic acid) core and magnetite (Fe3O4)/Au nanoparticle (NP) shell, was proposed here for the selective and highly sensitive detection and removal of 2,4,6-trinitrotoluene (TNT) explosives based on surface enhanced Raman scattering (SERS) and electrochemical detection methods. The presence of lignin and the highly packed layer of Fe3O4/AuNPs as a magnetic collector and metal enhancer for SERS signals allowed for the detection of TNT below 1 pM.

10.
Microorganisms ; 11(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38137970

RESUMO

Severe environmental conditions can have a diverse impact on marine microorganisms, including bacteria. This can have an inevitable impact on the biofouling of membrane-based desalination plants. In this work, we have utilized indicator bacteria such as total coliform, fecal coliform, and Pseudomonas aeruginosa, as well as 16S rRNA sequencing, to investigate the impact of environmental conditions and spatial variations on the diversity of bacterial communities in the coastal waters and sediments from selected sites in Qatar. The concentration levels of indicator bacteria were affected by increasing temperatures and pH, and by decreasing salinity of seawater samples. Diversity indices and the molecular phylogeny demonstrated that Proteobacteria, Bacteroidetes, and Cyanobacteria were the dominant phyla in all locations. The most abundant operational taxonomic units (OTUs) at the family level were from Flavobacteriaceae (27.07%, 4.31%) and Rhodobacteraceae (22.51%, 9.86%) in seawater and sediment, respectively. Alphaproteobacteria (33.87%, 16.82%), Flavobacteria (30.68%, 5.84%), and Gammaproteobacteria (20.35%, 12.45%) were abundant at the species level in both seawater and sediment, while Clostridia (13.72%) was abundant in sediment only. The results suggest that sediment can act as a reservoir for indicator bacteria, with higher diversity and lower abundance compared to seawater.

11.
Chemosphere ; 295: 133849, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35124080

RESUMO

In recent years, tremendous interest has been generated in MXenes as a fast-growing and diversified family of two-dimensional (2D) materials with a wide range of potential uses. MXenes exhibit many unique structural and physicochemical properties that make them particularly attractive as adsorbents for removing heavy metals from aqueous media, including a large surface area, abundant surface terminations, electron-richness, and hydrophilic nature. In light of the adsorption capabilities of MXenes at the ever-increasing rate of expansion, this review investigates the recent computational predictions for the adsorption capabilities of MXenes and the effect of synthesis of different MXene on their remediation behavior toward heavy metals. The influence of MXene engineering strategies such as alkalization, acidification, and incorporation into organic and inorganic hosts on their surface properties and adsorption capacity is compared to provide critical insights for designing effective MXene adsorbents. Additionally, the review discusses MXenes' adsorption mechanisms, the effect of coexisting ions on MXenes' selectivity, the regeneration of exhausted MXenes, and provides an overview of MXenes' stability and biocompatibility to demonstrate their potentiality for wastewater remediation. Finally, the review identifies current flaws and offers recommendations for further research.


Assuntos
Metais Pesados , Purificação da Água , Adsorção , Águas Residuárias , Água , Purificação da Água/métodos
12.
Membranes (Basel) ; 12(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35448377

RESUMO

Obstacles in the membrane-based separation field are mainly related to membrane fouling. This study involved the synthesis and utilization of covalently crosslinked MXene/cellulose acetate mixed matrix membranes with MXene at different concentrations (CCAM-0% to CCAM-12%) for water purification applications. The membranes' water flux, dye, and protein rejection performances were compared using dead-end (DE) and crossflow (CF) filtration. The fabricated membranes, especially CCAM-10%, exhibited high hydrophilicity, good surface roughness, significantly high water flux, high water uptake, and high porosity. A significantly higher flux was observed in CF filtration relative to DE filtration. Moreover, in CF filtration, the CCAM-10% membrane exhibited 96.60% and 99.49% rejection of methyl green (MG) and bovine serum albumin (BSA), respectively, while maintaining a flux recovery ratio of 67.30% and an irreversible fouling ratio at (Rir) of 32.70, indicating good antifouling performance. Hence, this study suggests that covalent modification of cellulose acetate membranes with MXene significantly improves the performance and fouling resistance of membranes for water filtration in CF mode relative to DE mode.

13.
Chemosphere ; 289: 133144, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34863730

RESUMO

An enhanced water flux and anti-fouling nanocomposite ultrafiltration membrane based on quaternary ammoniumpropylated polysilsesquioxane (QAPS)/cellulose acetate (QAPS@CA) was fabricated by in situ sol-gel processing via phase inversion followed by quaternization with methyl iodide (CH3I). Membrane characterizations were performed based on the contact angle, FTIR, SEM, and TGA properties. Membrane separation performance was assessed in terms of pure water flux, rejection, and fouling resistance. The 7%QAPS@CA nanocomposite membrane showed an increased wettability (46.6° water contact angle), water uptake (113%) and a high pure water permeability of ∼370 L m-2 h-1 bar-1. Furthermore, the 7%QAPS@CA nanocomposite membrane exhibited excellent bactericidal properties (∼97.5% growth inhibition) against Escherichia coli (E. coli) compared to the bare CA membrane (0% growth inhibition). The 7%QAPS@CA nanocomposite membrane can be recommended for water treatment and biomedical applications.


Assuntos
Escherichia coli , Membranas Artificiais , Celulose/análogos & derivados , Interações Hidrofóbicas e Hidrofílicas , Compostos de Organossilício
14.
Environ Technol Innov ; 27: 102775, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35761926

RESUMO

The apparent uncertainty associated with shedding patterns, environmental impacts, and sample processing strategies have greatly influenced the variability of SARS-CoV-2 concentrations in wastewater. This study evaluates the use of a new normalization approach using human RNase P for the logic estimation of SARS-CoV-2 viral load in wastewater. SARS-CoV-2 variants outbreak was monitored during the circulating wave between February and August 2021. Sewage samples were collected from five major wastewater treatment plants and subsequently analyzed to determine the viral loads in the wastewater. SARS-CoV-2 was detected in all the samples where the wastewater Ct values exhibited a similar trend as the reported number of new daily positive cases in the country. The infected population number was estimated using a mathematical model that compensated for RNA decay due to wastewater temperature and sewer residence time, and which indicated that the number of positive cases circulating in the population declined from 765,729 ± 142,080 to 2,303 ± 464 during the sampling period. Genomic analyses of SARS-CoV-2 of thirty wastewater samples collected between March 2021 and April 2021 revealed that alpha (B.1.1.7) and beta (B.1.351) were among the dominant variants of concern (VOC) in Qatar. The findings of this study imply that the normalization of data allows a more realistic assessment of incidence trends within the population.

15.
Membranes (Basel) ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35054578

RESUMO

Our environment desperately needs creative solutions to limit the effect of industrialization's fast rise and, consequently, to remediate vast amounts of harmful by-products and toxic exhausts [...].

16.
ACS Omega ; 6(49): 33325-33338, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34926884

RESUMO

Due to their broad applications in various industrial activities, and their well-known negative impacts on the aquatic environment, organic dyes have been continuously identified as serious threat to the quality of ecosystems. The photocatalytic degradation process in aqueous solutions has emerged as an efficient and reliable approach for the removal of organic dyes. MXenes, a new class of two-dimensional (2D) nanomaterials, possess unique chemical composition, surface functionalities, and physicochemical properties. Such characteristics enable MXenes to act as efficient catalysts or cocatalysts to photodegrade organic molecules. This work explores the application of Ti3C2T x MXene decorated with silver and palladium nanoparticles, using a simple hydrothermal treatment method, for the photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB). The chemical composition of these photocatalysts, as well as their structural properties and morphology, was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. The photocatalytic degradation abilities of the pristine MXene and the synthesized MXene composites were investigated under ultraviolet and solar light irradiation. A significant improvement in the photocatalytic performances was observed for all oxidized MXene composites when compared to pristine MXene, with a superior degradation efficiency achieved for AgNPs/TiO2/Ti3C2T x . This work broadens the application range of oxidized MXene composites, providing an alternative material for degrading organics dyes and wastewater treatment applications.

17.
Membranes (Basel) ; 11(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34357193

RESUMO

The properties of two-dimensional (2D) layered membrane systems can be medullated by the stacking arrangement and the heterostructure composition of the membrane. This largely affects the performance and stability of such membranes. Here, we have used first-principle density functional theory calculations to conduct a comparative study of two heterostructural bilayer systems of the 2D-MXene (Ti3C2T2, T = F, O, and OH) sheets with graphene and silver nanoparticles (AgNPs). For all considered surface terminations, the binding energy of the MXene/graphene and MXene/AgNPs bilayers increases as compared with graphene/graphene and MXene/MXene bilayer structures. Such strong interlayer interactions are due to profound variations of electrostatic potential across the layers. Larger interlayer binding energies in MXene/graphene systems were obtained even in the presence of water molecules, indicating enhanced stability of such a hybrid system against delamination. We also studied the structural properties of Ti3C2X2 MXene (X = F, O and OH) decorated with silver nanoclusters Agn (n ≤ 6). We found that regardless of surface functionalization, Ag nanoclusters were strongly adsorbed on the surface of MXene. In addition, Ag nanoparticles enhanced the binding energy between MXene layers. These findings can be useful in enhancing the structural properties of MXene membranes for water purification applications.

18.
Sci Total Environ ; 774: 145608, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33607430

RESUMO

Raw municipal wastewater from five wastewater treatment plants representing the vast majority of the Qatar population was sampled between the third week of June 2020 and the end of August 2020, during the period of declining cases after the peak of the first wave of infection in May 2020. The N1 region of the SARS-CoV-2 genome was used to quantify the viral load in the wastewater using RT-qPCR. The trend in Ct values in the wastewater samples mirrored the number of new daily positive cases officially reported for the country, confirmed by RT-qPCR testing of naso-pharyngeal swabs. SARS-CoV-2 RNA was detected in 100% of the influent wastewater samples (7889 ± 1421 copy/L - 542,056 ± 25,775 copy/L, based on the N1 assay). A mathematical model for wastewater-based epidemiology was developed and used to estimate the number of people in the population infected with COVID-19 from the N1 Ct values in the wastewater samples. The estimated number of infected population on any given day using the wastewater-based epidemiology approach declined from 542,313 ± 51,159 to 31,181 ± 3081 over the course of the sampling period, which was significantly higher than the officially reported numbers. However, seroprevalence data from Qatar indicates that diagnosed infections represented only about 10% of actual cases. The model estimates were lower than the corrected numbers based on application of a static diagnosis ratio of 10% to the RT-qPCR identified cases, which is assumed to be due to the difficulty in quantifying RNA losses as a model term. However, these results indicate that the presented WBE modeling approach allows for a realistic assessment of incidence trend in a given population, with a more reliable estimation of the number of infected people at any given point in time than can be achieved using human biomonitoring alone.


Assuntos
COVID-19 , SARS-CoV-2 , Surtos de Doenças , Humanos , Catar/epidemiologia , RNA Viral , Estudos Soroepidemiológicos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
19.
RSC Adv ; 10(41): 24697-24704, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35516227

RESUMO

A Nb4C3T x (MXene)-modified glassy carbon electrode was used for the electrochemical detection of Pb2+ ions in aqueous media. The sensing platform was evaluated by anodic stripping analysis after optimizing the influencing factors such as pH, deposition potential, and time. The large interlayer spacing, high c lattice parameter and higher conductivity of Nb4C3T x compared to other MXenes enhance the electrochemical detection of Pb2+. The developed sensor can reach a detection limit of 12 nM at a potential ∼-0.6 V. Additionally, the developed sensor showed promising selectivity in the presence of Cu2+ and Cd2+, and stability for at least 5 cycles of continuous measurements with good repeatability. This work demonstrates the potential applications of Nb4C3T x towards the development of effective electrochemical sensors.

20.
ACS Biomater Sci Eng ; 6(1): 38-47, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463193

RESUMO

Marine biofouling is considered to be one of the most challenging issues affecting maritime industries worldwide. In this regard, traditional biocides, being used to combat biofouling, have high toxicity toward aquatic systems. Recently, a new chitosan/zinc oxide nanoparticle (CZNC) composite has been used as a promising "green" biocide. It is thought that because of the ecofriendly nature of chitosan, CZNCs may pave the way to developing less toxic surfaces for combating marine fouling. Zebrafish has become one of the most employed models for ecotoxicology studies. Therefore, this study aims to comprehensively evaluate any potential acute, cardio, neuro, or hepatotoxic effect of CZNCs using zebrafish embryos. As evidenced by the acute toxicity assays, exposing zebrafish embryos to CZNCs (25-200 mg/L) did not elicit any signs of acute toxicity or mortality, suggesting a hypothetical LC50 higher than the maximum dose employed. CZNCs, at a concentration of 250 mg/L, also showed no cardiotoxic or neurotoxic effects. At the same dosage, a minor hepatotoxic effect was observed in zebrafish embryos exposed to CZNCs. However, the observed hepatotoxicity had no effect on embryo survival even after long-term (10-days) exposure to CZNCs. We believe our results add valuable information to the potential toxicity of chitosan/metal oxide nanocomposites, which may provide new insights into the synthesis of ecofriendly coatings with improved antifouling performance and a low adverse impact on the marine environment.


Assuntos
Incrustação Biológica , Quitosana , Nanocompostos , Óxido de Zinco , Animais , Quitosana/toxicidade , Nanocompostos/toxicidade , Peixe-Zebra , Óxido de Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA