Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 228(2): 122-132, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37162508

RESUMO

BACKGROUND: People with human immunodeficiency virus (HIV) have heightened incidence/risk of diastolic dysfunction and heart failure. Women with HIV have elevated cardiac fibrosis, and plasma osteopontin (Opn) is correlated to cardiac pathology. Therefore, this study provides mechanistic insight into the relationship between osteopontin and cardiac fibrosis during HIV infection. METHODS: Mouse embryonic fibroblasts (MEFs) modeled cardiac fibroblasts in vitro. Simian immunodeficiency virus (SIV)-infected macaques with or without antiretroviral therapy and HIV-infected humanized mice modeled HIV-associated cardiac fibrosis. RESULTS: Lipopolysaccharide-stimulated MEFs were myofibroblast-like, secreted cytokines, and produced Opn transcripts. SIV-infected animals had elevated plasma Opn at necropsy, full-length Opn in the ventricle, and ventricular interstitial fibrosis. Regression modeling identified growth differentiation factor 15, CD14+CD16+ monocytes, and CD163 expression on CD14+CD16+ monocytes as independent predictors of plasma Opn during SIV infection. HIV-infected humanized mice showed increased interstitial fibrosis compared to uninfected/untreated animals, and systemic inhibition of osteopontin by RNA aptamer reduced left ventricle fibrosis in HIV-infected humanized mice. CONCLUSIONS: Since Opn is elevated in the plasma and left ventricle during SIV infection and systemic inhibition of Opn reduced cardiac fibrosis in HIV-infected mice, Opn may be a potential target for adjunctive therapies to reduce cardiac fibrosis in people with HIV.


Assuntos
Cardiomiopatias , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Humanos , Animais , Feminino , Camundongos , Infecções por HIV/patologia , Osteopontina/genética , Osteopontina/metabolismo , Fibroblastos , Coração , Cardiomiopatias/patologia , Vírus da Imunodeficiência Símia/fisiologia , Fibrose , Macaca/metabolismo , HIV
2.
J Neuroinflammation ; 17(1): 273, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943056

RESUMO

BACKGROUND: Osteopontin (OPN) as a secreted signaling protein is dramatically induced in response to cellular injury and neurodegeneration. Microglial inflammatory responses in the brain are tightly associated with the neuropathologic hallmarks of neurodegenerative disease, but understanding of the molecular mechanisms remains in several contexts poorly understood. METHODS: Micro-positron emission tomography (PET) neuroimaging using radioligands to detect increased expression of the translocator protein (TSPO) receptor in the brain is a non-invasive tool used to track neuroinflammation in living mammals. RESULTS: In humanized, chronically HIV-infected female mice in which OPN expression was knocked down with functional aptamers, uptake of TSPO radioligand DPA-713 was markedly upregulated in the cortex, olfactory bulb, basal forebrain, hypothalamus, and central grey matter compared to controls. Microglia immunoreactive for Iba-1 were more abundant in some HIV-infected mice, but overall, the differences were not significant between groups. TSPO+ microglia were readily detected by immunolabeling of post-mortem brain tissue and unexpectedly, two types of neurons also selectively stained positive for TSPO. The reactive cells were the specialized neurons of the cerebellum, Purkinje cells, and a subset of tyrosine hydroxylase-positive neurons of the substantia nigra. CONCLUSIONS: In female mice with wild-type levels of osteopontin, increased levels of TSPO ligand uptake in the brain was seen in animals with the highest levels of persistent HIV replication. In contrast, in mice with lower levels of osteopontin, the highest levels of TSPO uptake was seen, in mice with relatively low levels of persistent infection. These findings suggest that osteopontin may act as a molecular brake regulating in the brain, the inflammatory response to HIV infection.


Assuntos
Encéfalo/metabolismo , Infecções por HIV/metabolismo , Mediadores da Inflamação/metabolismo , Osteopontina/metabolismo , Receptores de GABA/metabolismo , Animais , Encéfalo/virologia , Doença Crônica , Feminino , Infecções por HIV/genética , Humanos , Masculino , Camundongos , Camundongos SCID , Camundongos Transgênicos , Osteopontina/genética , Receptores de GABA/genética , Carga Viral/métodos , Carga Viral/fisiologia
4.
J Clin Invest ; 132(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085105

RESUMO

Tuberculous meningitis (TB meningitis) is the most severe form of tuberculosis (TB), requiring 12 months of multidrug treatment for cure, and is associated with high morbidity and mortality. High-dose rifampin (35 mg/kg/d) is safe and improves the bactericidal activity of the standard-dose (10 mg/kg/d) rifampin-containing TB regimen in pulmonary TB. However, there are conflicting clinical data regarding its benefit for TB meningitis, where outcomes may also be associated with intracerebral inflammation. We conducted cross-species studies in mice and rabbits, demonstrating that an intensified high-dose rifampin-containing regimen has significantly improved bactericidal activity for TB meningitis over the first-line, standard-dose rifampin regimen, without an increase in intracerebral inflammation. Positron emission tomography in live animals demonstrated spatially compartmentalized, lesion-specific pathology, with postmortem analyses showing discordant brain tissue and cerebrospinal fluid rifampin levels and inflammatory markers. Longitudinal multimodal imaging in the same cohort of animals during TB treatment as well as imaging studies in two cohorts of TB patients demonstrated that spatiotemporal changes in localized blood-brain barrier disruption in TB meningitis are an important driver of rifampin brain exposure. These data provide unique insights into the mechanisms underlying high-dose rifampin in TB meningitis with important implications for developing new antibiotic treatments for infections.


Assuntos
Rifampina , Tuberculose Meníngea , Animais , Antituberculosos , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Camundongos , Modelos Animais , Coelhos , Rifampina/uso terapêutico , Tuberculose Meníngea/complicações , Tuberculose Meníngea/tratamento farmacológico
5.
Mol Imaging Biol ; 24(1): 135-143, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34424479

RESUMO

PURPOSE: Molecular imaging has provided unparalleled opportunities to monitor disease processes, although tools for evaluating infection remain limited. Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by lung injury that we sought to model. Activated macrophages/phagocytes have an important role in lung injury, which is responsible for subsequent respiratory failure and death. We performed pulmonary PET/CT with 124I-iodo-DPA-713, a low-molecular-weight pyrazolopyrimidine ligand selectively trapped by activated macrophages cells, to evaluate the local immune response in a hamster model of SARS-CoV-2 infection. PROCEDURES: Pulmonary 124I-iodo-DPA-713 PET/CT was performed in SARS-CoV-2-infected golden Syrian hamsters. CT images were quantified using a custom-built lung segmentation tool. Studies with DPA-713-IRDye680LT and a fluorescent analog of DPA-713 as well as histopathology and flow cytometry were performed on post-mortem tissues. RESULTS: Infected hamsters were imaged at the peak of inflammatory lung disease (7 days post-infection). Quantitative CT analysis was successful for all scans and demonstrated worse pulmonary disease in male versus female animals (P < 0.01). Increased 124I-iodo-DPA-713 PET activity co-localized with the pneumonic lesions. Additionally, higher pulmonary 124I-iodo-DPA-713 PET activity was noted in male versus female hamsters (P = 0.02). DPA-713-IRDye680LT also localized to the pneumonic lesions. Flow cytometry demonstrated a higher percentage of myeloid and CD11b + cells (macrophages, phagocytes) in male versus female lung tissues (P = 0.02). CONCLUSION: 124I-Iodo-DPA-713 accumulates within pneumonic lesions in a hamster model of SARS-CoV-2 infection. As a novel molecular imaging tool, 124I-Iodo-DPA-713 PET could serve as a noninvasive, clinically translatable approach to monitor SARS-CoV-2-associated pulmonary inflammation and expedite the development of novel therapeutics for COVID-19.


Assuntos
Acetamidas/química , COVID-19/diagnóstico por imagem , COVID-19/veterinária , Radioisótopos do Iodo/química , Tomografia por Emissão de Pósitrons , Pirazóis/química , Pirimidinas/química , SARS-CoV-2/fisiologia , Animais , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pulmão/virologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Células Vero
6.
Brain Sci ; 10(6)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512754

RESUMO

The advent of Human Immunodeficiency Virus (HIV) antiretrovirals have reduced the severity of HIV related neurological comorbidities but they nevertheless remain prevalent. Synaptic degeneration due to the action of several viral factors released from infected brain myeloid and glia cells and inflammatory cytokines has been attributed to the manifestation of a range of cognitive and behavioral deficits. The contributions of specific pro-inflammatory factors and their interplay with viral factors in the setting of treatment and persistence are incompletely understood. Exposure of neurons to chemokine receptor-4(CXCR4)-tropic HIV-1 envelope glycoprotein (Env) can lead to post-synaptic degradation of dendritic spines. The contribution of members of the extracellular matrix (ECM) and specifically, of perineuronal nets (PNN) toward synaptic degeneration, is not fully known, even though these structures are found to be disrupted in post-mortem HIV-infected brains. Osteopontin (Opn, gene name SPP1), a cytokine-like protein, is found in abundance in the HIV-infected brain. In this study, we investigated the role of Opn and its ECM integrin receptors, ß1- and ß3 integrin in modifying neuronal synaptic sculpting. We found that in hippocampal neurons incubated with HIV-1 Env protein and recombinant Opn, post-synaptic-95 (PSD-95) puncta were significantly increased and distributed to dendritic spines when compared to Env-only treated neurons. This effect was mediated through ß3 integrin, as silencing of this receptor abrogated the increase in post-synaptic spines. Silencing of ß1 integrin, however, did not block the increase of post-synaptic spines in hippocampal cultures treated with Opn. However, a decrease in the PNN to ßIII-tubulin ratio was found, indicating an increased capacity to support spine growth. From these results, we conclude that one of the mechanisms by which Opn counters the damaging impact of the HIV Env protein on hippocampal post-synaptic plasticity is through complex interactions between Opn and components of the ECM which activate downstream protective signaling pathways that help maintain the potential for effective post-synaptic plasticity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA