Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(5): 1359-1376, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36504289

RESUMO

Over the last decades, the natural disturbance is increasingly putting pressure on European forests. Shifts in disturbance regimes may compromise forest functioning and the continuous provisioning of ecosystem services to society, including their climate change mitigation potential. Although forests are central to many European policies, we lack the long-term empirical data needed for thoroughly understanding disturbance dynamics, modeling them, and developing adaptive management strategies. Here, we present a unique database of >170,000 records of ground-based natural disturbance observations in European forests from 1950 to 2019. Reported data confirm a significant increase in forest disturbance in 34 European countries, causing on an average of 43.8 million m3 of disturbed timber volume per year over the 70-year study period. This value is likely a conservative estimate due to under-reporting, especially of small-scale disturbances. We used machine learning techniques for assessing the magnitude of unreported disturbances, which are estimated to be between 8.6 and 18.3 million m3 /year. In the last 20 years, disturbances on average accounted for 16% of the mean annual harvest in Europe. Wind was the most important disturbance agent over the study period (46% of total damage), followed by fire (24%) and bark beetles (17%). Bark beetle disturbance doubled its share of the total damage in the last 20 years. Forest disturbances can profoundly impact ecosystem services (e.g., climate change mitigation), affect regional forest resource provisioning and consequently disrupt long-term management planning objectives and timber markets. We conclude that adaptation to changing disturbance regimes must be placed at the core of the European forest management and policy debate. Furthermore, a coherent and homogeneous monitoring system of natural disturbances is urgently needed in Europe, to better observe and respond to the ongoing changes in forest disturbance regimes.


Assuntos
Besouros , Ecossistema , Animais , Árvores , Florestas , Europa (Continente)
2.
Glob Chang Biol ; 28(23): 6921-6943, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36117412

RESUMO

Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.


Assuntos
Ciclo do Carbono , Mudança Climática , Carbono , Temperatura , Água
3.
Open Res Eur ; 3: 32, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288290

RESUMO

Ecology and forestry sciences are using an increasing amount of data to address a wide variety of technical and research questions at the local, continental and global scales. However, one type of data remains rare: fine-grain descriptions of large landscapes. Yet, this type of data could help address the scaling issues in ecology and could prove useful for testing forest management strategies and accurately predicting the dynamics of ecosystem services. Here we present three datasets describing three large European landscapes in France, Poland and Slovenia down to the tree level. Tree diameter, height and species data were generated combining field data, vegetation maps and airborne laser scanning (ALS) data following an area-based approach. Together, these landscapes cover more than 100 000 ha and consist of more than 42 million trees of 51 different species. Alongside the data, we provide here a simple method to produce high-resolution descriptions of large landscapes using increasingly available data: inventory and ALS data. We carried out an in-depth evaluation of our workflow including, among other analyses, a leave-one-out cross validation. Overall, the landscapes we generated are in good agreement with the landscapes they aim to reproduce. In the most favourable conditions, the root mean square error (RMSE) of stand basal area (BA) and mean quadratic diameter (Dg) predictions were respectively 5.4 m 2.ha -1 and 3.9 cm, and the generated main species corresponded to the observed main species in 76.2% of cases.

4.
Sci Total Environ ; 833: 155189, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35427613

RESUMO

Forests and wood products play a major role in climate change mitigation strategies and the transition from a fossil-based economy to a circular bioeconomy. Accurate estimates of future forest productivity are crucial to predict the carbon sequestration and wood provision potential of forests. Since long, forest managers have used empirical yield tables as a cost-effective and reliable way to predict forest growth. However, recent climate change-induced growth shifts raised doubts about the long-term validity of these yield tables. In this study, we propose a methodology to improve available yield tables of 11 tree species in the Netherlands and Flanders, Belgium. The methodology uses scaling functions derived from climate-sensitive process-based modelling (PBM) that reflect state-of-the-art projections of future growth trends. Combining PBM and stand information from the empirical yield tables for the region of Flanders, we found that for the period 1987-2016 stand productivity has on average increased by 13% compared to 1961-1990. Furthermore, simulations indicate that this positive growth trend is most likely to persist in the coming decades, for all considered species, climate or site conditions. Nonetheless, results showed that local site variability is equally important to consider as the in- or exclusion of the CO2 fertilization effect or different climate projections, when assessing the magnitude of forests' response to climate change. Our projections suggest that incorporating these climate change-related productivity changes lead to a 7% increase in standing stock and a 22% increase in sustainably potentially harvestable woody biomass by 2050. The proposed methodology and resulting estimates of climate-sensitive projections of future woody biomass stocks will facilitate the further incorporation of forests and their products in global and regional strategies for the transition to a climate-smart circular bioeconomy.


Assuntos
Carbono , Mudança Climática , Biomassa , Carbono/metabolismo , Florestas , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA