Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(33): 11424-11432, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34378906

RESUMO

Enzyme-linked immunosorbent assays (ELISA), as one of the most used immunoassays, have been conducted ubiquitously in hospitals, research laboratories, etc. However, the conventional ELISA procedure is usually laborious, occupies bulky instruments, consumes lengthy operation time, and relies considerably on the skills of technicians, and such limitations call for innovations to develop a fully automated ELISA platform. In this paper, we have presented a system incorporating a robotic-microfluidic interface (RoMI) and a modular hybrid microfluidic chip that embeds a highly sensitive nanofibrous membrane, referred to as the Robotic ELISA, to achieve human-free sample-to-answer ELISA tests in a fully programmable and automated manner. It carries out multiple bioanalytical procedures to replace the manual steps involved in classic ELISA operations, including the pneumatically driven high-precision pipetting, efficient mixing and enrichment enabled by back-and-forth flows, washing, and integrated machine vision for colorimetric readout. The Robotic ELISA platform has achieved a low limit of detection of 0.1 ng/mL in the detection of a low sample volume (15 µL) of chloramphenicol within 20 min without human intervention, which is significantly faster than that of the conventional ELISA procedure. Benefiting from its modular design and automated operations, the Robotic ELISA platform has great potential to be deployed for a broad range of detections in various resource-limited settings or high-risk environments, where human involvement needs to be minimized while the testing timeliness, consistency, and sensitivity are all desired.


Assuntos
Técnicas Analíticas Microfluídicas , Procedimentos Cirúrgicos Robóticos , Colorimetria , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoensaio , Microfluídica
2.
SLAS Technol ; 25(6): 573-584, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32882150

RESUMO

We present a low-cost clinically viable ventilator design, AmbuBox, using a controllable pneumatic enclosure and standard manual resuscitators that are readily available (AmbuBag), which can be rapidly deployed during pandemic and mass-casualty events with a minimal set of components to manufacture and assemble. The AmbuBox is designed to address the existing challenges presented in the existing low-cost ventilator designs by offering an easy-to-install and simple-to-operate apparatus while maintaining a long lifespan with high-precision flow control. As an outcome, a mass-producible prototype of the AmbuBox has been devised, characterized, and validated in a bench test setup using a lung simulator. This prototype will be further investigated through clinical testing. Given the potentially urgent need for inexpensive and rapidly deployable ventilators globally, the overall design, operational principle, and device characterization of the AmbuBox system have been described in detail with open access online. Moreover, the fabrication and assembly methods have been incorporated to enable short-term producibility by a generic local manufacturing facility. In addition, a full list of all components used in the AmbuBox has been included to reflect its low-cost nature.


Assuntos
COVID-19/terapia , Serviços Médicos de Emergência/métodos , Respiração Artificial/métodos , SARS-CoV-2/fisiologia , Ventiladores Mecânicos/economia , Custos e Análise de Custo , Desenho de Equipamento , Humanos , Instalações Industriais e de Manufatura , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA