Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 578(7794): 251-255, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015545

RESUMO

Solid-state lithium metal batteries require accommodation of electrochemically generated mechanical stress inside the lithium: this stress can be1,2 up to 1 gigapascal for an overpotential of 135 millivolts. Maintaining the mechanical and electrochemical stability of the solid structure despite physical contact with moving corrosive lithium metal is a demanding requirement. Using in situ transmission electron microscopy, we investigated the deposition and stripping of metallic lithium or sodium held within a large number of parallel hollow tubules made of a mixed ionic-electronic conductor (MIEC). Here we show that these alkali metals-as single crystals-can grow out of and retract inside the tubules via mainly diffusional Coble creep along the MIEC/metal phase boundary. Unlike solid electrolytes, many MIECs are electrochemically stable in contact with lithium (that is, there is a direct tie-line to metallic lithium on the equilibrium phase diagram), so this Coble creep mechanism can effectively relieve stress, maintain electronic and ionic contacts, eliminate solid-electrolyte interphase debris, and allow the reversible deposition/stripping of lithium across a distance of 10 micrometres for 100 cycles. A centimetre-wide full cell-consisting of approximately 1010 MIEC cylinders/solid electrolyte/LiFePO4-shows a high capacity of about 164 milliampere hours per gram of LiFePO4, and almost no degradation for over 50 cycles, starting with a 1× excess of Li. Modelling shows that the design is insensitive to MIEC material choice with channels about 100 nanometres wide and 10-100 micrometres deep. The behaviour of lithium metal within the MIEC channels suggests that the chemical and mechanical stability issues with the metal-electrolyte interface in solid-state lithium metal batteries can be overcome using this architecture.

2.
Angew Chem Int Ed Engl ; 58(19): 6239-6243, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30861268

RESUMO

The sodium-ion battery is a promising battery technology owing to its low price and high abundance of sodium. However, the sluggish kinetics of sodium ion makes it hard to achieve high-rate performance, therefore impairing the power density. In this work, a fiber-in-tube Co9 S8 -carbon(C)/Co9 S8 is designed with fast sodiation kinetics. The experimental and simulation analysis show that the dominating capacitance mechanism for the high Na-ion storage performance is due to abundant grain boundaries, three exposed layer interfaces, and carbon wiring in the design. As a result, the fiber-in-tube hybrid anode shows a high specific capacity of 616 mAh g-1 after 150 cycles at 0.5 A g-1 . At 1 A g-1 , a capacity of ca. 451 mAh g-1 can be achieved after 500 cycles. More importantly, a high energy density of 779 Wh kg-1 and power density of 7793 W kg-1 can be obtained simultaneously.

3.
Chemistry ; 23(49): 11881-11890, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28613388

RESUMO

Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li+ transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices.

4.
Nano Lett ; 16(3): 1911-6, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26885570

RESUMO

Stacking faults (SFs) are commonly observed crystalline defects in III-V semiconductor nanowires (NWs) that affect a variety of physical properties. Understanding the effect of SFs on NW mechanical properties is critical to NW applications in nanodevices. In this study, the Young's moduli of GaAs NWs with two distinct structures, defect-free single crystalline wurtzite (WZ) and highly defective wurtzite containing a high density of SFs (WZ-SF), are investigated using combined in situ compression transmission electron microscopy and finite element analysis. The Young's moduli of both WZ and WZ-SF GaAs NWs were found to increase with decreasing diameter due to the increasing volume fraction of the native oxide shell. The presence of a high density of SFs was further found to increase the Young's modulus by 13%. This stiffening effect of SFs is attributed to the change in the interatomic bonding configuration at the SFs.

5.
Nano Lett ; 15(8): 5279-83, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26189461

RESUMO

Determination of the elastic modulus of nanostructures with sizes at several nm range is a challenge. In this study, we designed an experiment to measure the elastic modulus of amorphous Al2O3 films with thicknesses varying between 2 and 25 nm. The amorphous Al2O3 was in the form of a shell, wrapped around GaAs nanowires, thereby forming an effective core/shell structure. The GaAs core comprised a single crystal structure with a diameter of 100 nm. Combined in situ compression transmission electron microscopy and finite element analysis were used to evaluate the elastic modulus of the overall core/shell nanowires. A core/shell model was applied to deconvolute the elastic modulus of the Al2O3 shell from the core. The results indicate that the elastic modulus of amorphous Al2O3 increases significantly when the thickness of the layer is smaller than 5 nm. This novel nanoscale material can be attributed to the reconstruction of the bonding at the surface of the material, coupled with the increase of the surface-to-volume ratio with nanoscale dimensions. Moreover, the experimental technique and analysis methods presented in this study may be extended to measure the elastic modulus of other materials with dimensions of just several nanometers.

6.
Angew Chem Int Ed Engl ; 55(51): 15831-15834, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27865049

RESUMO

Low-cost, single-step synthesis of hollow nanotubes of N-doped carbon deposited on CoS is enabled by the simultaneous use of three functionalities of polyacrylonitrite (PAN) nanofibers: 1) a substrate for loading active materials, 2) a sacrificial template for creating hollow tubular structures, and 3) a precursor for in situ nitrogen doping. The N-doped carbon in hollow tubes of CoS provides a high-capacity anode of long cycle life for a rechargeable Li-ion or Na-ion battery cell that undergoes the conversion reaction 2 A+ +2 e- +CoS →Co+A2 S with A=Li or Na.

7.
Nanotechnology ; 26(43): 435704, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26444080

RESUMO

Loading misalignment and tapering of nanowires are usually unavoidable factors in compression and tensile mechanical property testing of nanowires. Herein, we report quantitative finite element analyses and experimental measurements on how these two factors affect the measured compression and tensile mechanical properties if they are not included in the data analysis. The results obtained show that ignoring these two factors leads to different degrees of underestimation of the critical load, Young's modulus and tensile fracture strength.

8.
J Am Chem Soc ; 136(25): 8855-8, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24930947

RESUMO

Controlling the kinetics and gelation of photopolymerization is a significant challenge in the fabrication of complex three-dimensional (3D) objects as is critical in numerous imaging, lithography, and additive manufacturing techniques. We propose a novel, visible light sensitive "photoinitibitor" which simultaneously generates two distinct radicals, each with their own unique purpose-one radical each for initiation and inhibition. The Janus-faced functions of this photoinitibitor delay gelation and dramatically amplify the gelation time difference between the constructive and destructive interference regions of the exposed holographic pattern. This approach enhances the photopolymerization induced phase separation of liquid crystal/acrylate resins and the formation of fine holographic polymer dispersed liquid crystal (HPDLC) gratings. Moreover, we construct colored 3D holographic images that are visually recognizable to the naked eye under white light.

9.
Nano Lett ; 13(7): 3169-72, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23755996

RESUMO

The mechanical behavior of vertically aligned single-crystal GaAs nanowires grown on GaAs(111)B surface was investigated using in situ deformation transmission electron microscopy. Anelasticity was observed in nanowires with small diameters and the anelastic behavior was affected by the crystalline defects in the nanowires. The underlying mechanism for the observed anelasticity is discussed. The finding opens up the prospect of using nanowire materials for nanoscale damping applications.

10.
Nano Lett ; 13(9): 4369-73, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23984872

RESUMO

Quantitative mechanical testing of single-crystal GaAs nanowires was conducted using in situ deformation transmission electron microscopy. Both zinc-blende and wurtzite structured GaAs nanowires showed essentially elastic deformation until bending failure associated with buckling occurred. These nanowires fail at compressive stresses of ~5.4 GPa and 6.2 GPa, respectively, which are close to those values calculated by molecular dynamics simulations. Interestingly, wurtzite nanowires with a high density of stacking faults fail at a very high compressive stress of ~9.0 GPa, demonstrating that the nanowires can be strengthened through defect engineering. The reasons for the observed phenomenon are discussed.

11.
ACS Appl Mater Interfaces ; 16(22): 29267-29281, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38780052

RESUMO

The dramatic growth of smart wearable electronics has generated a demand for conductive hydrogels due to their tunability, stimulus responsiveness, and multimodal sensing capabilities. However, the substantial trade-off between mechanical and electrical properties hinders their multifunctionality. Here, we report a double-network hydrogel composite that features a conductive "highway" constructed using magnetic-field-aligned nickel nanowires and liquid metal. The liquid metal fills the gaps between the aligned nickel nanowires. Such interconnected structures can form efficient conductive paths at low filler content, resulting in high conductivity (1.11 × 104 S/m) and mechanical compliance (Young's modulus, 89 kPa; toughness, 721 kJ/m3). When used as a wearable sensor, the hydrogel displays a high sensitivity and fast response for wireless motion detection and human-machine interaction. Furthermore, by exploiting its outstanding conductivity and electrical heating capacity, the hydrogel integrates electromagnetic shielding and thermal management functionalities. Owing to these all-around properties, our design offers a broader platform for expanding hydrogel applications.

12.
J Am Chem Soc ; 135(44): 16280-3, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24144455

RESUMO

By a novel in situ chemical vapor deposition, activated N-doped hollow carbon-nanotube/carbon-nanofiber composites are prepared having a superhigh specific Brunauer­Emmett­Teller (BET) surface area of 1840 m(2) g(­1) and a total pore volume of 1.21 m(3) g(­1). As an anode, this material has a reversible capacity of ~1150 mAh g(­1) at 0.1 A g(­1) (0.27 C) after 70 cycles. At 8 A g(­1) (21.5 C), a capacity of ~320 mAh g(­1) fades less than 20% after 3500 cycles, which makes it a superior anode material for a Li-ion battery.

13.
Nanomicro Lett ; 15(1): 31, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624322

RESUMO

Thermal management has become a crucial problem for high-power-density equipment and devices. Phase change materials (PCMs) have great prospects in thermal management applications because of their large capacity of heat storage and isothermal behavior during phase transition. However, low intrinsic thermal conductivity, ease of leakage, and lack of flexibility severely limit their applications. Solving one of these problems often comes at the expense of other performance of the PCMs. In this work, we report core-sheath structured phase change nanocomposites (PCNs) with an aligned and interconnected boron nitride nanosheet network by combining coaxial electrospinning, electrostatic spraying, and hot-pressing. The advanced PCN films exhibit an ultrahigh thermal conductivity of 28.3 W m-1 K-1 at a low BNNS loading (i.e., 32 wt%), which thereby endows the PCNs with high enthalpy (> 101 J g-1), outstanding ductility (> 40%) and improved fire retardancy. Therefore, our core-sheath strategies successfully balance the trade-off between thermal conductivity, flexibility, and phase change enthalpy of PCMs. Further, the PCNs provide powerful cooling solutions on 5G base station chips and thermoelectric generators, displaying promising thermal management applications on high-power-density equipment and thermoelectric conversion devices.

14.
Adv Mater ; 35(15): e2210624, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36648109

RESUMO

Hydrogels are widely used in tissue engineering, soft robots, wearable electronics, etc. However, it remains a great challenge to develop hydrogels possessing simultaneously high strength, large stretchability, great fracture energy, and good fatigue threshold to suit different applications. Herein, a novel solvent-exchange-assisted wet-annealing strategy is proposed to prepare high performance poly(vinyl alcohol) hydrogels by extensively tuning the macromolecular chain movement and optimizing the polymer network. The reinforcing and toughening mechanisms are found to be "macromolecule crystallization and entanglement". These hydrogels have large tensile strengths up to 11.19 ± 0.27 MPa and extremely high fracture strains of 1879 ± 10%. In addition, the fracture energy and fatigue threshold can reach as high as 25.39 ± 6.64 kJ m-2 and ≈1233 J m-2 , respectively. These superb mechanical properties compare favorably to those of other tough hydrogels, organogels, and even natural tendons and synthetic rubbers. This work provides a new and effective method to fabricate superstrong, tough, stretchable, and anti-fatigue hydrogels with potential applications in artificial tendons and ligaments.

15.
ACS Appl Mater Interfaces ; 15(1): 2313-2318, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36534513

RESUMO

Domain walls (DWs) in ferroelectric materials are interfaces that separate domains with different polarizations. Charged domain walls (CDWs) and neutral domain walls are commonly classified depending on the charge state at the DWs. CDWs are particularly attractive as they are configurable elements, which can enhance field susceptibility and enable functionalities such as conductance control. However, it is difficult to achieve CDWs in practice. Here, we demonstrate that applying mechanical stress is a robust and reproducible approach to generate CDWs. By mechanical compression, CDWs with a head/tail-to-body configuration were introduced in ultrathin BaTiO3, which was revealed by in-situ transmission electron microscopy. Finite element analysis shows strong strain fluctuation in ultrathin BaTiO3 under compressive mechanical stress. Molecular dynamics simulations suggest that the strain fluctuation is a critical factor in forming CDWs. This study provides insight into ferroelectric DWs and opens a pathway to creating CDWs in ferroelectric materials.

16.
Chem Commun (Camb) ; 59(17): 2381-2398, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36723354

RESUMO

Rechargeable potassium (K) batteries that are of low cost, with high energy densities and long cycle lives have attracted tremendous interest in affordable and large-scale energy storage. However, the large size of the K-ion leads to sluggish reaction kinetics and causes a large volume variation during the ion insertion/extraction processes, thus hindering the utilization of active electrode materials, triggering a serious structural collapse, and deteriorating the cycling performance. Therefore, the exploration of suitable materials/hosts that can reversibly and sustainably accommodate K-ions and host K metals are urgently needed. Electrospun carbon-based materials have been extensively studied as electrode/host materials for rechargeable K batteries owing to their designable structures, tunable composition, hierarchical pores, high conductivity, large surface areas, and good flexibility. Here, we present the recent developments in electrospun CNF-based nanomaterials for various K batteries (e.g., K-ion batteries, K metal batteries, K-chalcogen batteries), including their fabrication methods, structural modulation, and electrochemical performance. This Feature Article is expected to offer guidelines for the rational design of novel electrospun electrodes for the next-generation K batteries.

17.
Nanotechnology ; 23(22): 225701, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22572720

RESUMO

Covalent attachment of 2,2'-(ethylenedioxy)-diethylamine to multiwalled carbon nanotubes (MWCNTs) produced amino-functionalized MWCNTs which behaved like liquids at ambient temperature. These liquid-like MWCNTs (l-MWCNTs) could be homogeneously dispersed and chemically embedded in an epoxy matrix by solvent-free processing. In contrast, solid MWCNTs (s-MWCNTs) functionalized by 1,8-diaminooctane were poorly dispersed in epoxy although they possess chemical structures and functionalization comparable to l-MWCNTs. An epoxy composite filled with pristine MWCNTs (p-MWCNTs) was also fabricated in the absence of a solvent at the same loading for comparison. The molecular level coupling of l-MWCNTs and epoxy provided significant improvements in overall mechanical properties relative to those composites containing p-MWCNTs and s-MWCNTs. The Young's modulus, storage modulus, tensile strength, failure strain and toughness of neat epoxy were increased by 28.4, 23.8, 22.9, 24.1 and 66.1%, respectively, by adding 0.5 wt% of l-MWCNTs. Thus, functionalized carbon nanotubes in liquid form contributed to better dispersion and superior interfacial bonding with the epoxy matrix, thereby facilitating greater mechanical reinforcement efficiency.

18.
Sci Bull (Beijing) ; 67(19): 1991-2000, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546209

RESUMO

The long-term safe operation of high-power equipment and integrated electronic devices requires efficient thermal management, which in turn increases the energy consumption further. Hence, the sustainable development of our society needs advanced thermal management with low, even zero, energy consumption. Harvesting water from the atmosphere, followed by moisture desorption to dissipate heat, is an efficient and feasible approach for zero-energy-consumption thermal management. However, current methods are limited by the low absorbance of water, low water vapor transmission rate (WVTR) and low stability, thus resulting in low thermal management capability. In this study, we report an innovative electrospinning method to process hierarchically porous metal-organic framework (MOF) composite fabrics with high-efficiency and zero-energy-consumption thermal management. The composite fabrics are highly loaded with MOF (75 wt%) and their WVTR value can be up to 3138 g m-2 d-1. The composite fabrics also exhibit stable microstructure and performance. Under a conventional environment (30 ℃, 60% relative humidity), the composite fabrics adsorb water vapor for regeneration within 1.5 h to a saturated value Wsat of 0.614 g g-1, and a corresponding equivalent enthalpy of 1705.6 J g-1. In the thermal management tests, the composite fabrics show a strong cooling capability and significantly improve the performance of thermoelectric devices, portable storage devices and wireless chargers. These results suggest that hierarchically porous MOF composite fabrics are highly promising for thermal management of intermittent-operation electronic devices.

19.
Adv Mater ; 34(52): e2201023, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35581925

RESUMO

The integrated circuits industry has been continuously producing microelectronic components with ever higher integration level, packaging density, and power density, which demand more stringent requirements for heat dissipation. Electronic packaging materials are used to pack these microelectronic components together, help to dissipate heat, redistribute stresses, and protect the whole system from the environment. They serve an important role in ensuring the performance and reliability of the electronic devices. Among various packaging materials, epoxy-based underfills are often employed in flip-chip packaging. However, widely used capillary underfill materials suffer from their low thermal conductivity, unable to meet the growing heat dissipation required of next-generation IC chips with much higher power density. Many strategies have been proposed to improve the thermal conductivity of epoxy, but its application as underfill materials with complex performance requirements is still difficult. In fact, optimizing the combined thermal-electrical-mechanical-processing properties of underfill materials for flip-chip packaging remains a great challenge. Herein, state-of-the-art advances that have been made to satisfy the key requirements of capillary underfill materials are reviewed. Based on these studies, the perspectives for designing high-performance underfill materials with novel microstructures in electronic packaging for high-power density electronic devices are provided.

20.
Nanotechnology ; 22(23): 235702, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21483046

RESUMO

We report the fabrication of novel multiferroic nanostructured bismuth ferrite (BiFeO(3)) fibers using the sol-gel based electrospinning technique. Phase pure BiFeO(3) fibers were prepared by thermally annealing the electrospun BiFeO(3)/polyvinylpyrrolidone composite fibers in air for 1 h at 600 °C. The x-ray diffraction pattern of the fibers (BiFeO(3)) obtained showed that their crystalline structures were rhombohedral perovskite structures. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed that the BiFeO(3) fibers were composed of fine grained microstructures. The grains were self-assembled and self-organized to yield dense and continuous fibrous structures. The magnetic hysteresis loops of these nanostructured fibers displayed the expected ferromagnetic behavior, whereby a coercivity of ∼ 250 Oe and a saturation magnetization of ∼ 1.34 emu g(-1) were obtained. The ferroelectricity and ferroelectric domain structures of the fibers were confirmed using piezoresponse force microscopy (PFM). The piezoelectric hysteresis loops and polar domain switching behavior of the fibers were examined. Such multiferroic fibers are significant for electroactive applications and nano-scale devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA