Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Lancet ; 403(10432): 1164-1175, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38402887

RESUMO

BACKGROUND: Novel oral poliovirus vaccine type 2 (nOPV2) has been engineered to improve the genetic stability of Sabin oral poliovirus vaccine (OPV) and reduce the emergence of circulating vaccine-derived polioviruses. This trial aimed to provide key safety and immunogenicity data required for nOPV2 licensure and WHO prequalification. METHODS: This phase 3 trial recruited infants aged 18 to <52 weeks and young children aged 1 to <5 years in The Gambia. Infants randomly assigned to receive one or two doses of one of three lots of nOPV2 or one lot of bivalent OPV (bOPV). Young children were randomised to receive two doses of nOPV2 lot 1 or bOPV. The primary immunogenicity objective was to assess lot-to-lot equivalence of the three nOPV2 lots based on one-dose type 2 poliovirus neutralising antibody seroconversion rates in infants. Equivalence was declared if the 95% CI for the three pairwise rate differences was within the -10% to 10% equivalence margin. Tolerability and safety were assessed based on the rates of solicited adverse events to 7 days, unsolicited adverse events to 28 days, and serious adverse events to 3 months post-dose. Stool poliovirus excretion was examined. The trial was registered as PACTR202010705577776 and is completed. FINDINGS: Between February and October, 2021, 2345 infants and 600 young children were vaccinated. 2272 (96·9%) were eligible for inclusion in the post-dose one per-protocol population. Seroconversion rates ranged from 48·9% to 49·2% across the three lots. The minimum lower bound of the 95% CIs for the pairwise differences in seroconversion rates between lots was -5·8%. The maximum upper bound was 5·4%. Equivalence was therefore shown. Of those seronegative at baseline, 143 (85·6%) of 167 (95% CI 79·4-90·6) infants and 54 (83·1%) of 65 (71·7-91·2) young children seroconverted over the two-dose nOPV2 schedule. The post-two-dose seroprotection rates, including participants who were both seronegative and seropositive at baseline, were 604 (92·9%) of 650 (95% CI 90·7-94·8) in infants and 276 (95·5%) of 289 (92·4-97·6) in young children. No safety concerns were identified. 7 days post-dose one, 78 (41·7%) of 187 (95% CI 34·6-49·1) infants were excreting the type 2 poliovirus. INTERPRETATION: nOPV2 was immunogenic and safe in infants and young children in The Gambia. The data support the licensure and WHO prequalification of nOPV2. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Poliomielite , Poliovirus , Pré-Escolar , Humanos , Lactente , Anticorpos Antivirais , Formação de Anticorpos , Gâmbia , Esquemas de Imunização , Poliomielite/epidemiologia , Vacina Antipólio Oral
2.
J Infect Dis ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195177

RESUMO

This study assesses poliovirus type 1 (PV1) immunity in children to inform the contribution of mucosal immunity in and preventing poliovirus circulation. A community-based study was conducted in peri-urban Karachi, Pakistan. Randomly selected children (0-15 years) received oral poliovirus vaccine (OPV) challenge dose. Blood and stool samples were collected at several time points and evaluated for polio-neutralizing antibodies and serotype-specific poliovirus, respectively. 81/589 (14%) children excreted PV1 7 days post-OPV-challenge; 70/81 (86%) were seropositive at baseline. 12/610 (2%) were asymptomatic Wild Poliovirus Type 1 (WPV1) excretors. Most poliovirus excretors had humoral immunity, suggesting mucosal immunity in these children likely waned or never developed. Without mucosal immunity, they are susceptible to poliovirus infection, shedding, and transmission. Asymptomatic WPV1 excretion suggests undetected poliovirus circulation within the community.

3.
J Infect Dis ; 229(1): 39-42, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368349

RESUMO

This was a follow-up study conducted in 2020 assessing changes in levels of type 2 poliovirus-neutralizing antibodies 2 years postimmunization in children who received inactivated poliovirus vaccine (IPV) in Karachi, Pakistan. Unexpectedly, the findings revealed an increase in seroprevalence of type 2 antibodies from 73.1% to 81.6% 1 year and 2 years after IPV, respectively. The increase in type 2 immunity could result from the intensive transmission of circulating vaccine-derived poliovirus type 2 (cVDPV2) in Karachi during the second year of IPV administration. This study suggests that the cVDPV2 outbreak detected in Pakistan infected large proportions of children in Karachi. Clinical Trials Registration . NCT03286803.


Assuntos
Poliomielite , Poliovirus , Criança , Humanos , Anticorpos Antivirais , Seguimentos , Paquistão/epidemiologia , Vacina Antipólio de Vírus Inativado , Vacina Antipólio Oral , Estudos Soroepidemiológicos
4.
Lancet ; 401(10371): 131-139, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36495882

RESUMO

BACKGROUND: Type 2 circulating vaccine-derived polioviruses (cVDPV2) from Sabin oral poliovirus vaccines (OPVs) are the leading cause of poliomyelitis. A novel type 2 OPV (nOPV2) has been developed to be more genetically stable with similar tolerability and immunogenicity to that of Sabin type 2 vaccines to mitigate the risk of cVDPV2. We aimed to assess these aspects of nOPV2 in poliovirus vaccine-naive newborn infants. METHODS: In this randomised, double-blind, controlled, phase 2 trial we enrolled newborn infants at the Matlab Health Research Centre, Chandpur, Bangladesh. We included infants who were healthy and were a single birth after at least 37 weeks' gestation. Infants were randomly assigned (2:1) to receive either two doses of nOPV2 or placebo, administered at age 0-3 days and at 4 weeks. Exclusion criteria included receipt of rotavirus or any other poliovirus vaccine, any infection or illness at the time of enrolment (vomiting, diarrhoea, or intolerance to liquids), diagnosis or suspicion of any immunodeficiency disorder in the infant or a close family member, or any contraindication for venipuncture. The primary safety outcome was safety and tolerability after one and two doses of nOPV2, given 4 weeks apart in poliovirus vaccine-naive newborn infants and the primary immunogenicity outcome was the seroconversion rate for neutralising antibodies against type 2 poliovirus, measured 28 days after the first and second vaccinations with nOPV2. Study staff recorded solicited and unsolicited adverse events after each dose during daily home visits for 7 days. Poliovirus neutralising antibody responses were measured in sera drawn at birth and at age 4 weeks and 8 weeks. This study is registered on ClinicalTrials.gov, NCT04693286. FINDINGS: Between Sept 21, 2020, and Aug 16, 2021, we screened 334 newborn infants, of whom three (<1%) were found to be ineligible and one (<1%) was withdrawn by the parents; the remaining 330 (99%) infants were assigned to receive nOPV2 (n=220 [67%]) or placebo (n=110 [33%]). nOPV2 was well tolerated; 154 (70%) of 220 newborn infants in the nOPV2 group and 78 (71%) of 110 in the placebo group had solicited adverse events, which were all mild or moderate in severity. Severe unsolicited adverse events in 11 (5%) vaccine recipients and five (5%) placebo recipients were considered unrelated to vaccination. 306 (93%) of 330 infants had seroprotective maternal antibodies against type 2 poliovirus at birth, decreasing to 58 (56%) of 104 in the placebo group at 8 weeks. In the nOPV2 group 196 (90%) of 217 infants seroconverted by week 8 after two doses, when 214 (99%) had seroprotective antibodies. INTERPRETATION: nOPV2 was well tolerated and immunogenic in newborn infants, with two doses, at birth and 4 weeks, resulting in almost 99% of infants having protective neutralising antibodies. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Poliomielite , Poliovirus , Recém-Nascido , Humanos , Lactente , Pré-Escolar , Bangladesh , Anticorpos Antivirais , Vacina Antipólio Oral , Poliomielite/prevenção & controle , Anticorpos Neutralizantes , Método Duplo-Cego
5.
PLoS Pathog ; 18(3): e1010322, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35263388

RESUMO

Cholesterol homeostasis is required for the replication of many viruses, including Ebola virus, hepatitis C virus, and human immunodeficiency virus-1. Niemann-Pick C1 (NPC1) is an endosomal-lysosomal membrane protein involved in cholesterol trafficking from late endosomes and lysosomes to the endoplasmic reticulum. We identified NPC1 in CRISPR and RNA interference screens as a putative host factor for infection by mammalian orthoreovirus (reovirus). Following internalization via clathrin-mediated endocytosis, the reovirus outer capsid is proteolytically removed, the endosomal membrane is disrupted, and the viral core is released into the cytoplasm where viral transcription, genome replication, and assembly take place. We found that reovirus infection is significantly impaired in cells lacking NPC1, but infection is restored by treatment of cells with hydroxypropyl-ß-cyclodextrin, which binds and solubilizes cholesterol. Absence of NPC1 did not dampen infection by infectious subvirion particles, which are reovirus disassembly intermediates that bypass the endocytic pathway for infection of target cells. NPC1 is not required for reovirus attachment to the plasma membrane, internalization into cells, or uncoating within endosomes. Instead, NPC1 is required for delivery of transcriptionally active reovirus core particles from endosomes into the cytoplasm. These findings suggest that cholesterol homeostasis, ensured by NPC1 transport activity, is required for reovirus penetration into the cytoplasm, pointing to a new function for NPC1 and cholesterol homeostasis in viral infection.


Assuntos
Infecções por Reoviridae , Reoviridae , Animais , Colesterol/metabolismo , Endossomos/metabolismo , Homeostase , Humanos , Mamíferos , Proteína C1 de Niemann-Pick/metabolismo , Reoviridae/metabolismo , Infecções por Reoviridae/metabolismo
6.
J Virol ; 96(4): e0183221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935439

RESUMO

Segmentation of viral genomes provides the potential for genetic exchange within coinfected cells. However, for this potential to be realized, coinfecting genomes must mix during the viral life cycle. The efficiency of reassortment, in turn, dictates its potential to drive evolution. The opportunity for mixing within coinfected cells may vary greatly across virus families, such that the evolutionary implications of genome segmentation differ as a result of core features of the viral life cycle. To investigate the relationship between viral replication compartments and genetic exchange, we quantified reassortment in mammalian orthoreovirus (reovirus). Reoviruses carry a 10-segmented, double-stranded RNA genome, which is replicated within proteinaceous structures termed inclusion bodies. We hypothesized that inclusions impose a barrier to reassortment. We quantified reassortment between wild-type (wt) and variant (var) reoviruses that differ by one nucleotide per segment. Studies of wt/var systems in both T1L and T3D backgrounds revealed frequent reassortment without bias toward particular genotypes. However, reassortment was more efficient in the T3D serotype. Since T1L and T3D viruses exhibit different inclusion body morphologies, we tested the impact of this phenotype on reassortment. In both serotypes, reassortment levels did not differ by inclusion morphology. Reasoning that the merging of viral inclusions may be critical for genome mixing, we then tested the effect of blocking merging. Reassortment proceeded efficiently even under these conditions. Our findings indicate that reovirus reassortment is highly efficient despite the localization of many viral processes to inclusion bodies, and that the robustness of this genetic exchange is independent of inclusion body structure and fusion. IMPORTANCE Quantification of reassortment in diverse viral systems is critical to elucidate the implications of genome segmentation for viral evolution. In principle, genome segmentation offers a facile means of genetic exchange between coinfecting viruses. In practice, there may be physical barriers within the cell that limit the mixing of viral genomes. Here, we tested the hypothesis that localization of the various stages of the mammalian orthoreovirus life cycle within cytoplasmic inclusion bodies compartmentalizes viral replication and limits genetic exchange. Contrary to this hypothesis, our data indicate that reovirus reassortment occurs readily within coinfected cells and is not strongly affected by the structure or dynamics of viral inclusion bodies. We conclude that the potential for reassortment to contribute to reovirus evolution is high.


Assuntos
Orthoreovirus de Mamíferos/genética , Vírus Reordenados/genética , Animais , Linhagem Celular , Genoma Viral/genética , Genótipo , Corpos de Inclusão Viral/ultraestrutura , Camundongos , Microtúbulos/metabolismo , Sorogrupo , Replicação Viral
7.
J Infect Dis ; 226(8): 1319-1326, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35575051

RESUMO

BACKGROUND: The polio eradication endgame called for the removal of trivalent oral poliovirus vaccine (OPV) and introduction of bivalent (types 1 and 3) OPV and inactivated poliovirus vaccine (IPV). However, supply shortages have delayed IPV administration to tens of millions of infants, and immunogenicity data are currently lacking to guide catch-up vaccination policies. METHODS: We conducted an open-label randomized clinical trial assessing 2 interventions, full or fractional-dose IPV (fIPV, one-fifth of IPV), administered at age 9-13 months with a second dose given 2 months later. Serum was collected at days 0, 60, 67, and 90 to assess seroconversion, priming, and antibody titer. None received IPV or poliovirus type 2-containing vaccines before enrolment. RESULTS: A single fIPV dose at age 9-13 months yielded 75% (95% confidence interval [CI], 6%-82%) seroconversion against type 2, whereas 2 fIPV doses resulted in 100% seroconversion compared with 94% (95% CI, 89%-97%) after a single full dose (P < .001). Two doses of IPV resulted in 100% seroconversion. CONCLUSIONS: Our study confirmed increased IPV immunogenicity when administered at an older age, likely due to reduced interference from maternally derived antibodies. Either 1 full dose of IPV or 2 doses of fIPV could be used to vaccinate missed cohorts, 2 fIPV doses being antigen sparing and more immunogenic. CLINICAL TRIAL REGISTRATION: NCT03890497.


Assuntos
Poliomielite , Poliovirus , Idoso , Anticorpos Antivirais , Bangladesh , Humanos , Esquemas de Imunização , Lactente , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado , Vacina Antipólio Oral , Vacinação/métodos
8.
J Virol ; 94(22)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32847857

RESUMO

Triple-negative breast cancer (TNBC) constitutes 10 to 15% of all breast cancer and is associated with worse prognosis than other subtypes of breast cancer. Current therapies are limited to cytotoxic chemotherapy, radiation, and surgery, leaving a need for targeted therapeutics to improve outcomes for TNBC patients. Mammalian orthoreovirus (reovirus) is a nonenveloped, segmented, double-stranded RNA virus in the Reoviridae family. Reovirus preferentially kills transformed cells and is in clinical trials to assess its efficacy against several types of cancer. We previously engineered a reassortant reovirus, r2Reovirus, that infects TNBC cells more efficiently and induces cell death with faster kinetics than parental reoviruses. In this study, we sought to understand the mechanisms by which r2Reovirus induces cell death in TNBC cells. We show that r2Reovirus infection of TNBC cells of a mesenchymal stem-like (MSL) lineage downregulates the mitogen-activated protein kinase/extracellular signal-related kinase pathway and induces nonconventional cell death that is caspase-dependent but caspase 3-independent. Infection of different MSL lineage TNBC cells with r2Reovirus results in caspase 3-dependent cell death. We map the enhanced oncolytic properties of r2Reovirus in TNBC to epistatic interactions between the type 3 Dearing M2 gene segment and type 1 Lang genes. These findings suggest that the genetic composition of the host cell impacts the mechanism of reovirus-induced cell death in TNBC. Together, our data show that understanding host and virus determinants of cell death can identify novel properties and interactions between host and viral gene products that can be exploited for the development of improved viral oncolytics.IMPORTANCE TNBC is unresponsive to hormone therapies, leaving patients afflicted with this disease with limited treatment options. We previously engineered an oncolytic reovirus (r2Reovirus) with enhanced infective and cytotoxic properties in TNBC cells. However, how r2Reovirus promotes TNBC cell death is not known. In this study, we show that reassortant r2Reovirus can promote nonconventional caspase-dependent but caspase 3-independent cell death and that the mechanism of cell death depends on the genetic composition of the host cell. We also map the enhanced oncolytic properties of r2Reovirus in TNBC to interactions between a type 3 M2 gene segment and type 1 genes. Our data show that understanding the interplay between the host cell environment and the genetic composition of oncolytic viruses is crucial for the development of efficacious viral oncolytics.


Assuntos
Morte Celular/fisiologia , Reoviridae/fisiologia , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular , Humanos , Mitocôndrias/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos , Orthoreovirus de Mamíferos/genética , Reoviridae/genética , Proteínas Virais/metabolismo
9.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32699094

RESUMO

The newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic of respiratory illness. Current evidence suggests that severe cases of SARS-CoV-2 are associated with a dysregulated immune response. However, little is known about how the innate immune system responds to SARS-CoV-2. In this study, we modeled SARS-CoV-2 infection using primary human airway epithelial (pHAE) cultures, which are maintained in an air-liquid interface. We found that SARS-CoV-2 infects and replicates in pHAE cultures and is directionally released on the apical, but not basolateral, surface. Transcriptional profiling studies found that infected pHAE cultures had a molecular signature dominated by proinflammatory cytokines and chemokine induction, including interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and CXCL8, and identified NF-κB and ATF-4 as key drivers of this proinflammatory cytokine response. Surprisingly, we observed a complete lack of a type I or III interferon (IFN) response to SARS-CoV-2 infection. However, pretreatment and posttreatment with type I and III IFNs significantly reduced virus replication in pHAE cultures that correlated with upregulation of antiviral effector genes. Combined, our findings demonstrate that SARS-CoV-2 does not trigger an IFN response but is sensitive to the effects of type I and III IFNs. Our studies demonstrate the utility of pHAE cultures to model SARS-CoV-2 infection and that both type I and III IFNs can serve as therapeutic options to treat COVID-19 patients.IMPORTANCE The current pandemic of respiratory illness, COVID-19, is caused by a recently emerged coronavirus named SARS-CoV-2. This virus infects airway and lung cells causing fever, dry cough, and shortness of breath. Severe cases of COVID-19 can result in lung damage, low blood oxygen levels, and even death. As there are currently no vaccines approved for use in humans, studies of the mechanisms of SARS-CoV-2 infection are urgently needed. Our research identifies an excellent system to model SARS-CoV-2 infection of the human airways that can be used to test various treatments. Analysis of infection in this model system found that human airway epithelial cell cultures induce a strong proinflammatory cytokine response yet block the production of type I and III IFNs to SARS-CoV-2. However, treatment of airway cultures with the immune molecules type I or type III interferon (IFN) was able to inhibit SARS-CoV-2 infection. Thus, our model system identified type I or type III IFN as potential antiviral treatments for COVID-19 patients.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Células Epiteliais/imunologia , Interferon Tipo I/imunologia , Interferons/imunologia , Pneumonia Viral/imunologia , Animais , Betacoronavirus/fisiologia , Brônquios/citologia , Brônquios/imunologia , Brônquios/virologia , COVID-19 , Linhagem Celular , Células Cultivadas , Quimiocinas/imunologia , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Citocinas/imunologia , Cães , Células Epiteliais/virologia , Humanos , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Células Vero , Replicação Viral , Interferon lambda
10.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511390

RESUMO

Breast cancer is the second leading cause of cancer-related deaths in women in the United States. Triple-negative breast cancer constitutes a subset of breast cancer that is associated with higher rates of relapse, decreased survival, and limited therapeutic options for patients afflicted with this type of breast cancer. Mammalian orthoreovirus (reovirus) selectively infects and kills transformed cells, and a serotype 3 reovirus is in clinical trials to assess its efficacy as an oncolytic agent against several cancers. It is unclear if reovirus serotypes differentially infect and kill triple-negative breast cancer cells and if reovirus-induced cytotoxicity of breast cancer cells can be enhanced by modulating the activity of host molecules and pathways. Here, we generated reassortant reoviruses by forward genetics with enhanced infective and cytotoxic properties in triple-negative breast cancer cells. From a high-throughput screen of small-molecule inhibitors, we identified topoisomerase inhibitors as a class of drugs that enhance reovirus infectivity and cytotoxicity of triple-negative breast cancer cells. Treatment of triple-negative breast cancer cells with topoisomerase inhibitors activates DNA damage response pathways, and reovirus infection induces robust production of type III, but not type I, interferon (IFN). Although type I and type III IFNs can activate STAT1 and STAT2, triple-negative breast cancer cellular proliferation is only negatively affected by type I IFN. Together, these data show that reassortant viruses with a novel genetic composition generated by forward genetics in combination with topoisomerase inhibitors more efficiently infect and kill triple-negative breast cancer cells.IMPORTANCE Patients afflicted by triple-negative breast cancer have decreased survival and limited therapeutic options. Reovirus infection results in cell death of a variety of cancers, but it is unknown if different reovirus types lead to triple-negative breast cancer cell death. In this study, we generated two novel reoviruses that more efficiently infect and kill triple-negative breast cancer cells. We show that infection in the presence of DNA-damaging agents enhances infection and triple-negative breast cancer cell killing by reovirus. These data suggest that a combination of a genetically engineered oncolytic reovirus and topoisomerase inhibitors may provide a potent therapeutic option for patients afflicted with triple-negative breast cancer.


Assuntos
Apoptose , Neoplasias da Mama/terapia , Terapia Viral Oncolítica/métodos , Reoviridae/fisiologia , Inibidores da Topoisomerase/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/imunologia , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Dano ao DNA , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Imunidade Inata , Interferons/metabolismo , Cinética , Vírus Oncolíticos/fisiologia , Reoviridae/genética , Infecções por Reoviridae/virologia , Inibidores da Topoisomerase/uso terapêutico , Replicação Viral , Interferon lambda
11.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232191

RESUMO

Noroviruses are enteric pathogens causing significant morbidity, mortality, and economic losses worldwide. Secretory immunoglobulins (sIg) are a first line of mucosal defense against enteric pathogens. They are secreted into the intestinal lumen via the polymeric immunoglobulin receptor (pIgR), where they bind to antigens. However, whether natural sIg protect against norovirus infection remains unknown. To determine if natural sIg alter murine norovirus (MNV) pathogenesis, we infected pIgR knockout (KO) mice, which lack sIg in mucosal secretions. Acute MNV infection was significantly reduced in pIgR KO mice compared to controls, despite increased MNV target cells in the Peyer's patch. Natural sIg did not alter MNV binding to the follicle-associated epithelium (FAE) or crossing of the FAE into the lymphoid follicle. Instead, naive pIgR KO mice had enhanced levels of the antiviral inflammatory molecules interferon gamma (IFN-γ) and inducible nitric oxide synthase (iNOS) in the ileum compared to controls. Strikingly, depletion of the intestinal microbiota in pIgR KO and control mice resulted in comparable IFN-γ and iNOS levels, as well as MNV infectious titers. IFN-γ treatment of wild-type (WT) mice and neutralization of IFN-γ in pIgR KO mice modulated MNV titers, implicating the antiviral cytokine in the phenotype. Reduced gastrointestinal infection in pIgR KO mice was also observed with another enteric virus, reovirus. Collectively, our findings suggest that natural sIg are not protective during enteric virus infection, but rather, that sIg promote enteric viral infection through alterations in microbial immune responses.IMPORTANCE Enteric virus, such as norovirus, infections cause significant morbidity and mortality worldwide. However, direct antiviral infection prevention strategies are limited. Blocking host entry and initiation of infection provides an established avenue for intervention. Here, we investigated the role of the polymeric immunoglobulin receptor (pIgR)-secretory immunoglobulin (sIg) cycle during enteric virus infections. The innate immune functions of sIg (agglutination, immune exclusion, neutralization, and expulsion) were not required during control of acute murine norovirus (MNV) infection. Instead, lack of pIgR resulted in increased IFN-γ levels, which contributed to reduced MNV titers. Another enteric virus, reovirus, also showed decreased infection in pIgR KO mice. Collectively, our data point to a model in which sIg-mediated microbial sensing promotes norovirus and reovirus infection. These data provide the first evidence of the proviral role of natural sIg during enteric virus infections and provide another example of how intestinal bacterial communities indirectly influence MNV pathogenesis.


Assuntos
Infecções por Caliciviridae/virologia , Trato Gastrointestinal/virologia , Imunoglobulinas/metabolismo , Receptores de Imunoglobulina Polimérica/fisiologia , Infecções por Reoviridae/virologia , Replicação Viral/imunologia , Animais , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/metabolismo , Trato Gastrointestinal/imunologia , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Norovirus/imunologia , Reoviridae/imunologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/metabolismo
12.
PLoS Pathog ; 13(12): e1006768, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29211815

RESUMO

Enteric viruses encounter diverse environments as they migrate through the gastrointestinal tract to infect their hosts. The interaction of eukaryotic viruses with members of the host microbiota can greatly impact various aspects of virus biology, including the efficiency with which viruses can infect their hosts. Mammalian orthoreovirus, a human enteric virus that infects most humans during childhood, is negatively affected by antibiotic treatment prior to infection. However, it is not known how components of the host microbiota affect reovirus infectivity. In this study, we show that reovirus virions directly interact with Gram positive and Gram negative bacteria. Reovirus interaction with bacterial cells conveys enhanced virion thermostability that translates into enhanced attachment and infection of cells following an environmental insult. Enhanced virion thermostability was also conveyed by bacterial envelope components lipopolysaccharide (LPS) and peptidoglycan (PG). Lipoteichoic acid and N-acetylglucosamine-containing polysaccharides enhanced virion stability in a serotype-dependent manner. LPS and PG also enhanced the thermostability of an intermediate reovirus particle (ISVP) that is associated with primary infection in the gut. Although LPS and PG alter reovirus thermostability, these bacterial envelope components did not affect reovirus utilization of its proteinaceous cellular receptor junctional adhesion molecule-A or cell entry kinetics. LPS and PG also did not affect the overall number of reovirus capsid proteins σ1 and σ3, suggesting their effect on virion thermostability is not mediated through altering the overall number of major capsid proteins on the virus. Incubation of reovirus with LPS and PG did not significantly affect the neutralizing efficiency of reovirus-specific antibodies. These data suggest that bacteria enhance reovirus infection of the intestinal tract by enhancing the thermal stability of the reovirus particle at a variety of temperatures through interactions between the viral particle and bacterial envelope components.


Assuntos
Bacillus subtilis/fisiologia , Enterócitos/virologia , Escherichia coli K12/fisiologia , Infecções por Reoviridae/virologia , Reoviridae/fisiologia , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Acetilglucosamina/toxicidade , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestrutura , Bacillus subtilis/virologia , Células CACO-2 , Endotoxinas/metabolismo , Endotoxinas/toxicidade , Enterócitos/efeitos dos fármacos , Enterócitos/microbiologia , Enterócitos/patologia , Escherichia coli K12/metabolismo , Escherichia coli K12/ultraestrutura , Escherichia coli K12/virologia , Microbioma Gastrointestinal , Células HeLa , Temperatura Alta , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica de Transmissão , Peptidoglicano/metabolismo , Peptidoglicano/toxicidade , RNA/metabolismo , Estabilidade de RNA/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Reoviridae/química , Reoviridae/efeitos dos fármacos , Reoviridae/patogenicidade , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/microbiologia , Infecções por Reoviridae/patologia , Ácidos Teicoicos/metabolismo , Ácidos Teicoicos/toxicidade , Vírion/química , Vírion/patogenicidade , Vírion/fisiologia , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Proteína Vermelha Fluorescente
13.
J Virol ; 90(23): 10951-10962, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27681135

RESUMO

Proteins that form the reovirus outer capsid play an active role in the entry of reovirus into host cells. Among these, the σ1 protein mediates attachment of reovirus particles to host cells via interaction with cell surface glycans or the proteinaceous receptor junctional adhesion molecule A (JAM-A). The µ1 protein functions to penetrate the host cell membrane to allow delivery of the genome-containing viral core particle into the cytoplasm to initiate viral replication. We demonstrate that a reassortant virus that expresses the M2 gene-encoded µ1 protein derived from prototype strain T3D in an otherwise prototype T1L background (T1L/T3DM2) infects cells more efficiently than parental T1L. Unexpectedly, the enhancement in infectivity of T1L/T3DM2 is due to its capacity to attach to cells more efficiently. We present genetic data implicating the central region of µ1 in altering the cell attachment property of reovirus. Our data indicate that the T3D µ1-mediated enhancement in infectivity of T1L is dependent on the function of σ1 and requires the expression of JAM-A. We also demonstrate that T1L/T3DM2 utilizes JAM-A more efficiently than T1L. These studies revealed a previously unknown relationship between two nonadjacent reovirus outer capsid proteins, σ1 and µ1. IMPORTANCE: How reovirus attaches to host cells has been extensively characterized. Attachment of reovirus to host cells is mediated by the σ1 protein, and properties of σ1 influence the capacity of reovirus to target specific host tissues and produce disease. Here, we present new evidence indicating that the cell attachment properties of σ1 are influenced by the nature of µ1, a capsid protein that does not physically interact with σ1. These studies could explain the previously described role for µ1 in influencing reovirus pathogenesis. These studies are also of broader significance because they highlight an example of how genetic reassortment between virus strains could produce phenotypes that are distinct from those of either parent.


Assuntos
Proteínas do Capsídeo/fisiologia , Orthoreovirus Mamífero 3/fisiologia , Orthoreovirus Mamífero 3/patogenicidade , Animais , Proteínas do Capsídeo/genética , Moléculas de Adesão Celular/fisiologia , Linhagem Celular , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Orthoreovirus Mamífero 3/genética , Camundongos , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/patogenicidade , Orthoreovirus de Mamíferos/fisiologia , Receptores de Superfície Celular/fisiologia , Receptores Virais/fisiologia , Infecções por Reoviridae/etiologia , Infecções por Reoviridae/virologia , Virulência/genética , Virulência/fisiologia , Ligação Viral
15.
PLoS Pathog ; 11(12): e1005303, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26629703

RESUMO

Human metapneumovirus (HMPV), a member of the Paramyxoviridae family, is a leading cause of lower respiratory illness. Although receptor binding is thought to initiate fusion at the plasma membrane for paramyxoviruses, the entry mechanism for HMPV is largely uncharacterized. Here we sought to determine whether HMPV initiates fusion at the plasma membrane or following internalization. To study the HMPV entry process in human bronchial epithelial (BEAS-2B) cells, we used fluorescence microscopy, an R18-dequenching fusion assay, and developed a quantitative, fluorescence microscopy assay to follow virus binding, internalization, membrane fusion, and visualize the cellular site of HMPV fusion. We found that HMPV particles are internalized into human bronchial epithelial cells before fusing with endosomes. Using chemical inhibitors and RNA interference, we determined that HMPV particles are internalized via clathrin-mediated endocytosis in a dynamin-dependent manner. HMPV fusion and productive infection are promoted by RGD-binding integrin engagement, internalization, actin polymerization, and dynamin. Further, HMPV fusion is pH-independent, although infection with rare strains is modestly inhibited by RNA interference or chemical inhibition of endosomal acidification. Thus, HMPV can enter via endocytosis, but the viral fusion machinery is not triggered by low pH. Together, our results indicate that HMPV is capable of entering host cells by multiple pathways, including membrane fusion from endosomal compartments.


Assuntos
Metapneumovirus/fisiologia , Infecções por Paramyxoviridae/metabolismo , Mucosa Respiratória/virologia , Internalização do Vírus , Brônquios/virologia , Linhagem Celular , Endossomos/metabolismo , Citometria de Fluxo , Humanos , Microscopia Confocal , RNA Interferente Pequeno , Transfecção , Proteínas Virais de Fusão/metabolismo
16.
J Virol ; 89(17): 8701-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26109733

RESUMO

UNLABELLED: Mammalian orthoreoviruses (reoviruses) are nonenveloped double-stranded RNA viruses that infect most mammalian species, including humans. Reovirus binds to cell surface glycans, junctional adhesion molecule A (JAM-A), and the Nogo-1 receptor (depending on the cell type) and enters cells by receptor-mediated endocytosis. Within the endocytic compartment, reovirus undergoes stepwise disassembly, which is followed by release of the transcriptionally active viral core into the cytoplasm. In a small-molecule screen to identify host mediators of reovirus infection, we found that treatment of cells with 5-nonyloxytryptamine (5-NT), a prototype serotonin receptor agonist, diminished reovirus cytotoxicity. 5-NT also blocked reovirus infection. In contrast, treatment of cells with methiothepin mesylate, a serotonin antagonist, enhanced infection by reovirus. 5-NT did not alter cell surface expression of JAM-A or attachment of reovirus to cells. However, 5-NT altered the distribution of early endosomes with a concomitant impairment of reovirus transit to late endosomes and a delay in reovirus disassembly. Consistent with an inhibition of viral disassembly, 5-NT treatment did not alter infection by in vitro-generated infectious subvirion particles, which bind to JAM-A but bypass a requirement for proteolytic uncoating in endosomes to infect cells. We also found that treatment of cells with 5-NT decreased the infectivity of alphavirus chikungunya virus and coronavirus mouse hepatitis virus. These data suggest that serotonin receptor signaling influences cellular activities that regulate entry of diverse virus families and provides a new, potentially broad-spectrum target for antiviral drug development. IMPORTANCE: Identification of well-characterized small molecules that modulate viral infection can accelerate development of antiviral therapeutics while also providing new tools to increase our understanding of the cellular processes that underlie virus-mediated cell injury. We conducted a small-molecule screen to identify compounds capable of inhibiting cytotoxicity caused by reovirus, a prototype double-stranded RNA virus. We found that 5-nonyloxytryptamine (5-NT) impairs reovirus infection by altering viral transport during cell entry. Remarkably, 5-NT also inhibits infection by an alphavirus and a coronavirus. The antiviral properties of 5-NT suggest that serotonin receptor signaling is an important regulator of infection by diverse virus families and illuminate a potential new drug target.


Assuntos
Infecções por Reoviridae/tratamento farmacológico , Reoviridae/patogenicidade , Antagonistas da Serotonina/farmacologia , Triptaminas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/patogenicidade , Chlorocebus aethiops , Toxina da Cólera/metabolismo , Cricetinae , Citoesqueleto/efeitos dos fármacos , Endossomos/fisiologia , Endossomos/virologia , Células HeLa , Humanos , Interferon gama/biossíntese , Células L , Metiotepina/farmacologia , Camundongos , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/patogenicidade , Reoviridae/efeitos dos fármacos , Reoviridae/fisiologia , Transferrina/metabolismo , Células Vero , Montagem de Vírus/efeitos dos fármacos , Ligação Viral/efeitos dos fármacos
17.
Microbiol Resour Announc ; : e0008024, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888364

RESUMO

We report the complete genome sequences of six S19 poliovirus reference strains for all three poliovirus serotypes, including three Sabin vaccine-derived and three wild-type-derived strains. The S19 strains are extensively attenuated and genetically stable when compared to the reference poliovirus strains, while maintaining the same antigenicity and immunogenicity.

18.
Lancet Infect Dis ; 24(3): 275-284, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38109921

RESUMO

BACKGROUND: The novel oral poliovirus vaccine type 2 (nOPV2) is now authorised by a WHO emergency use listing and widely distributed to interrupt outbreaks of circulating vaccine-derived poliovirus type 2. As protection of vulnerable populations, particularly young infants, could be facilitated by shorter intervals between the two recommended doses, we aimed to assess safety and non-inferiority of immunogenicity of nOPV2 in 1-week, 2-week, and 4-week schedules. METHODS: In this phase 3, open-label, randomised trial, healthy, full-term, infants aged 6-8 weeks from a hospital or a clinic in the Dominican Republic were randomly allocated (1:1:1 ratio) using a pre-prepared, computer-generated randomisation schedule to three groups to receive two doses of nOPV2 immunisations with a 1-week interval (group A), 2-week interval (group B), or 4-week interval (group C). The nOPV2 vaccine was given at a 0·1 mL dose and contained at least 105 50% cell culture infective dose. Neutralising antibodies against poliovirus types 1, 2, and 3 were measured before each immunisation and 4 weeks after the second dose. The primary outcome was the type 2 seroconversion rate 28 days after the second dose, and the non-inferiority margin was defined as a lower bound 95% CI of greater than -10%. Safety and reactogenicity were assessed through diary cards completed by the parent or guardian. The trial is registered with ClinicalTrials.gov, NCT05033561. FINDINGS: We enrolled 905 infants between Dec 16, 2021, and March 28, 2022. 872 infants were included in the per-protocol analyses: 289 in group A, 293 in group B, and 290 in group C. Type 2 seroconversion rates were 87·5% (95% CI 83·2 to 91·1) in group A (253 of 289 participants), 91·8% (88·1 to 94·7) in group B (269 of 293 participants), and 95·5% (92·5 to 97·6) in group C (277 of 290 participants). Non-inferiority was shown for group B compared with group C (difference in rates -3·7; 95% CI -7·9 to 0·3), but not for group A compared with group C (-8·0; -12·7 to -3·6). 4 weeks after the second nOPV2 dose, type 2 neutralising antibodies increased in all three groups such that over 95% of each group was seroprotected against polio type 2, although final geometric mean titres tended to be highest with longer intervals between doses. Immunisation with nOPV2 was well tolerated with no causal association to vaccination of any severe or serious adverse event; one death from septic shock during the study was unrelated to the vaccine. INTERPRETATION: Two nOPV2 doses administered 1 week or 2 weeks apart from age 6 weeks to 8 weeks were safe and immunogenic. Immune responses after a 2-week interval were non-inferior to those after the standard 4-week interval, but marked responses after a 1-week interval suggest that schedules with an over 1-week interval can be used to provide flexibility to campaigns to improve coverage and hasten protection during circulating vaccine-derived poliovirus type 2 outbreaks. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Vacina Antipólio Oral , Poliovirus , Lactente , Humanos , República Dominicana , Esquemas de Imunização , Vacina Antipólio de Vírus Inativado , Anticorpos Neutralizantes , Imunogenicidade da Vacina , Anticorpos Antivirais
19.
Lancet Reg Health West Pac ; 44: 100986, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38204497

RESUMO

Background: In June 2018, a type 1 circulating vaccine-derived poliovirus (cVDPV1) outbreak was declared in Papua New Guinea (PNG), resulting in a total of 26 paralytic confirmed cases. Eight vaccination campaign rounds with bivalent oral poliovirus vaccine (bOPV) were carried out in response. Prevalence of neutralizing polio antibodies in children was assessed two years after the outbreak response was completed. Methods: We conducted a cross-sectional serological survey among children aged 6 months-10 years selected from six provinces in PNG to evaluate seroprevalence of neutralizing polio antibodies to the three poliovirus serotypes and analyse sociodemographic risk factors. Findings: We included 984 of 1006 enrolled children in the final analysis. The seroprevalence of neutralizing polio antibodies for serotype 1, 2 and 3 was 98.3% (95% CI: 97.4-98.9), 63.1% (95% CI: 60.1-66.1) and 95.0% (95% CI: 93.6-96.3), respectively. Children <1 year had significantly lower type 1 seroprevalence compared to older children (p < 0.001); there were no significant differences in seroprevalence among provinces. Interpretation: PNG successfully interrupted transmission of cVDPV1 with several high coverage bOPV campaigns and seroprevalence remained high after two years. The emergence of cVDPV strains underscores the importance of maintaining high levels of routine immunization coverage and effective surveillance systems for early detection. Funding: World Health Organization through a Rotary International IPPC grant.

20.
Lancet Infect Dis ; 24(4): 417-426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237616

RESUMO

BACKGROUND: Novel oral polio vaccine type 2 (nOPV2) has been used to interrupt circulating vaccine-derived poliovirus type 2 outbreaks following its WHO emergency use listing. This study reports data on the safety and immunogenicity of nOPV2 over two rounds of a campaign in The Gambia. METHODS: This observational cohort study collected baseline symptoms (vomiting, diarrhoea, irritability, reduced feeding, and reduced activity) and axillary temperature from children aged 6 weeks to 59 months in The Gambia before a series of two rounds of a nOPV2 campaign that took place on Nov 20-26, 2021, and March 19-22, 2022. Serum and stool samples were collected from a subset of the participants. The same symptoms were re-assessed during the week following each dose of nOPV2. Stool samples were collected on days 7 and 28, and serum was collected on day 28 following each dose. Adverse events, including adverse events of special interest, were documented for 28 days after each campaign round. Serum neutralising antibodies were measured by microneutralisation assay, and stool poliovirus excretion was measured by real-time RT-PCR. FINDINGS: Of the 5635 children eligible for the study, 5504 (97·7%) received at least one dose of nOPV2. There was no increase in axillary temperature or in any of the baseline symptoms following either rounds of the campaigns. There were no adverse events of special interest and no other safety signals of concern. Poliovirus type 2 seroconversion rates were 70% (95% CI 62 to 78; 87 of 124 children) following one dose of nOPV2 and 91% (85 to 95; 113 of 124 children) following two doses. Poliovirus excretion on day 7 was lower after the second round (162 of 459 samples; 35·3%, 95% CI 31·1 to 39·8) than after the first round (292 of 658 samples; 44·4%, 40·6 to 48·2) of the campaign (difference -9·1%; 95% CI -14·8 to -3·3), showing the induction of mucosal immunity. INTERPRETATION: In a campaign in west Africa, nOPV2 was well tolerated and safe. High rates of seroconversion and evidence of mucosal immunity support the licensure and WHO prequalification of this vaccine. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Poliomielite , Poliovirus , Humanos , Anticorpos Antivirais , Gâmbia/epidemiologia , Esquemas de Imunização , Imunogenicidade da Vacina , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado , Vacina Antipólio Oral , Lactente , Pré-Escolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA