Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 28(9): 1163-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26224287

RESUMO

The aim of this study was to determine the ability of multiparametric MRI to identify the early effects of individual treatment, during combined chemo-radiotherapy on brain tumours. Eighty male rats bearing 9L gliosarcomas were randomized into four groups: untreated, anti-angiogenic therapy (SORA group), microbeam radiation therapy (MRT group) and both treatments (MRT+SORA group). Multiparametric MRI (tumour volume, diffusion-weighted MR imaging (ADC), blood volume fraction (BVf), microvessel index (VSI), vessel wall integrity (AUC(P846)) and tissue oxygen saturation (StO2)) was performed 1 day before and 2, 5 and 8 days after treatment initiation. Unpaired t-tests and one-way ANOVA were used for statistical analyses. Each MR parameter measured in our protocol was revealed to be sensitive to tumour changes induced by any of the therapies used (individually or combined). When compared with untreated tumours, SORA induced a decrease in BVf, VSI, StO2 and AUC(P846), MRT generated an increase in ADC and AUC(P846) and combined therapies yielded mixed effects: an increase in ADC and AUC(P846) and a decrease in BVf, StO2 and AUC(P846). MRT and MRT+SORA significantly slowed tumour growth. Despite these two groups presenting with similar tumour sizes, the information yielded from MR multiparameter assessment indicated that, when used concomitantly, each therapy induced distinguishable and appreciable physiological changes in the tumour. Our results suggest that multiparametric MRI can monitor the effects of individual treatments, used concomitantly, on brain tumours. Such monitoring would be useful for the detection of tumour resistance to drug/radiotherapy in patients undergoing concomitant therapies.


Assuntos
Neoplasias Encefálicas/terapia , Imageamento por Ressonância Magnética/métodos , Inibidores da Angiogênese/uso terapêutico , Animais , Biomarcadores , Neoplasias Encefálicas/patologia , Masculino , Medicina de Precisão , Ratos , Ratos Endogâmicos F344
2.
Radiology ; 265(3): 743-52, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22996750

RESUMO

PURPOSE: To assess the reproducibility of the magnetic resonance (MR) estimate of blood oxygen saturation (sO(2)) in the rat brain, to evaluate the relationship between low MR estimate of sO(2) values and tissue hypoxia in a hypoxic and necrotic glioscarcoma model (9L gliosarcoma cells), and to evaluate the capability of the MR estimate of sO(2) parameter to help identify modifications induced by an antiangiogenic treatment (sorafenib) in 9L gliosarcoma tumors. MATERIALS AND METHODS: Experiments were performed with permits from the French Ministry of Agriculture. Forty-eight male rats bearing a 9L gliosarcoma were randomized in untreated and treated (sorafenib) groups. MR blood volume fraction and MR estimate of sO(2) parameters were estimated 1 day before and 1, 3, 5, and 8 days after the start of the treatment. The in vivo MR estimate of sO(2) measurement was correlated with the ex vivo hypoxia assessment by using pimonidazole staining. Paired and unpaired t tests, as well as parametric Pearson tests, were used for the statistical analyses. RESULTS: In healthy tissues, MR estimate of sO(2) measurements were comparable to literature values and were reproducible (mean across all animals, 68.0% ± 6.5 [standard deviation]). In untreated tumors, MR estimate of sO(2) and immunohistochemical analysis yielded correlated fractional hypoxic-necrotic areas (R(2) = 0.81). In tumors treated with antiangiogenic therapy, tumor MR estimate of sO(2) was decreased with respect to the healthy tissue (P< .001). CONCLUSION: Results of this study suggest that the MR estimate of sO(2) is a reproducible estimate that could be used as an in vivo probe of hypoxia in brain tumors and as a sensitive reporter of the hypoxic effects of antiangiogenic therapies.


Assuntos
Inibidores da Angiogênese/farmacologia , Benzenossulfonatos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Gliossarcoma/tratamento farmacológico , Gliossarcoma/metabolismo , Imageamento por Ressonância Magnética/métodos , Oxigênio/sangue , Piridinas/farmacologia , Análise de Variância , Animais , Dextranos/administração & dosagem , Hipóxia Encefálica/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Modelos Lineares , Nanopartículas de Magnetita/administração & dosagem , Masculino , Niacinamida/análogos & derivados , Nitroimidazóis/administração & dosagem , Compostos de Fenilureia , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344 , Reprodutibilidade dos Testes , Sorafenibe
3.
Radiology ; 257(2): 342-52, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20829544

RESUMO

PURPOSE: To evaluate the sequential injection of a low-molecular-weight (gadoterate meglumine [Gd-DOTA], 0.5 kDa) and a macromolecular (P846, 3.5 kDa) contrast media in monitoring the effect of antitumor therapies (antiangiogenic therapy and/or microbeam radiation therapy [MRT]) on healthy brain tissue and implanted tumors. MATERIALS AND METHODS: Animal use was compliant with official French guidelines and was assessed by the local Internal Evaluation Committee for Animal Welfare and Rights. Eighty male rats bearing 9L gliosarcoma were randomized into four groups: untreated, antiangiogenic (sorafenib) therapy, MRT, and both treatments. Magnetic resonance (MR) imaging was performed 1 day before and 1, 5, and 8 days after the start of the treatment. At all time points, vascular integrity to a macromolecular contrast medium (P846) and, 11 minutes 30 seconds later, to low-molecular-weight contrast medium (Gd-DOTA) was evaluated by using a dynamic contrast material-enhanced MR imaging approach. To quantify vessel wall integrity, areas under the signal intensity curves were computed for each contrast medium. Unpaired t tests and one-way analysis of variance were used for statistical analyses. RESULTS: Tumor vessels receiving antiangiogenic therapy became less permeable to the macromolecular contrast medium, but their permeability to the low-molecular-weight contrast medium remained unchanged. Healthy double-irradiated vessels became permeable to the low-molecular-weight contrast medium but not to the macromolecular contrast medium. CONCLUSION: Antiangiogenic therapy and MRT generate different effects on the extravasation of contrast medium in tumoral and healthy tissues. This study indicates that the use of a low-molecular-weight contrast medium and a macromolecular contrast medium provides complementary information and suggests that the use of two contrast media within the same MR imaging session is feasible.


Assuntos
Benzenossulfonatos/farmacologia , Barreira Hematoencefálica , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Meios de Contraste/farmacocinética , Glioma/tratamento farmacológico , Glioma/radioterapia , Compostos Heterocíclicos/farmacocinética , Imageamento por Ressonância Magnética/métodos , Compostos Organometálicos/farmacocinética , Piridinas/farmacologia , Análise de Variância , Animais , Área Sob a Curva , Modelos Animais de Doenças , Substâncias Macromoleculares , Masculino , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/radioterapia , Niacinamida/análogos & derivados , Compostos de Fenilureia , Distribuição Aleatória , Ratos , Sorafenibe
4.
Oncotarget ; 6(13): 11421-33, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25823656

RESUMO

Adrenal carcinoma (ACC) is a rare neoplasm with a poor outcome. Aberrant expression of ß-catenin has been found in approximatively 30% of ACC. We herein studied its effects on the growth of the human ACC cell line H295R. The cells were infected with short hairpin RNA (shRNA)-mediated silencing ß-catenin. Two shRNAs used induced down-regulation of ß-catenin protein levels. The expression of these shRNAs decreased cell growth and increased H295R cells in S and G2/M phases. This cytostatic effect is due to a decrease of phosphorylated MAPK and to an up-regulation expression of the cyclin-dependent kinase inhibitors p57(KIP2), p21(CIP) and p27(KIP1). In addition, the knockdown of ß-catenin decreased phosphorylated Akt and increased apoptosis. Finally, loss of ß-catenin was sufficient to induce the reversal of the epithelial-to-mesenchymal transition. We then transplanted these genetically modified H295R cells in Scid mice. Tumor growth suppression was achieved by the two shRNAs showing in vitro efficacy. Proliferation was not reduced in silenced tumors. In contrast, p57, p27 and p21 proteins were found expressed at high levels in silenced tumors along with an increase in apoptotic cells. These findings indicate that ß-catenin loss in H295R cells inhibits tumor growth by inducing transcriptional and functional changes.


Assuntos
Neoplasias do Córtex Suprarrenal/metabolismo , Carcinoma Adrenocortical/metabolismo , Proliferação de Células , Transição Epitelial-Mesenquimal , beta Catenina/metabolismo , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/patologia , Neoplasias do Córtex Suprarrenal/terapia , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/patologia , Carcinoma Adrenocortical/terapia , Animais , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Regulação para Baixo , Pontos de Checagem da Fase G2 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Genótipo , Humanos , Camundongos SCID , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Terapêutica com RNAi , Pontos de Checagem da Fase S do Ciclo Celular , Transdução de Sinais , Fatores de Tempo , Transfecção , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
5.
Int J Radiat Oncol Biol Phys ; 78(5): 1503-12, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20932689

RESUMO

PURPOSE: Synchrotron microbeam radiation therapy (MRT) relies on spatial fractionation of the incident photon beam into parallel micron-wide beams. Our aim was to analyze the effects of MRT on normal brain and 9L gliosarcoma tissues, particularly on blood vessels. METHODS AND MATERIALS: Responses to MRT (two arrays, one lateral, one anteroposterior (2 × 400 Gy), intersecting orthogonally in the tumor region) were studied during 6 weeks using MRI, immunohistochemistry, and vascular endothelial growth factor Western blot. RESULTS: MRT increased the median survival time of irradiated rats (×3.25), significantly increased blood vessel permeability, and inhibited tumor growth; a cytotoxic effect on 9L cells was detected 5 days after irradiation. Significant decreases in tumoral blood volume fraction and vessel diameter were measured from 8 days after irradiation, due to loss of endothelial cells in tumors as detected by immunochemistry. Edema was observed in the normal brain exposed to both crossfired arrays about 6 weeks after irradiation. This edema was associated with changes in blood vessel morphology and an overexpression of vascular endothelial growth factor. Conversely, vascular parameters and vessel morphology in brain regions exposed to one of the two arrays were not damaged, and there was no loss of vascular endothelia. CONCLUSIONS: We show for the first time that preferential damage of MRT to tumor vessels versus preservation of radioresistant normal brain vessels contributes to the efficient palliation of 9L gliosarcomas in rats. Molecular pathways of repair mechanisms in normal and tumoral vascular networks after MRT may be essential for the improvement of such differential effects on the vasculature.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Encéfalo/irrigação sanguínea , Artérias Cerebrais/efeitos da radiação , Veias Cerebrais/efeitos da radiação , Gliossarcoma/irrigação sanguínea , Síncrotrons , Animais , Edema Encefálico/diagnóstico , Edema Encefálico/etiologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Permeabilidade Capilar/efeitos da radiação , Circulação Cerebrovascular/efeitos da radiação , Gliossarcoma/mortalidade , Gliossarcoma/patologia , Imageamento por Ressonância Magnética , Método de Monte Carlo , Tolerância a Radiação , Dosagem Radioterapêutica , Ratos , Ratos Endogâmicos F344 , Carga Tumoral , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA