Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Molecules ; 25(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066091

RESUMO

The goal of this work was to develop a shape memory polymer (SMP) foam with visibility under both X-ray and magnetic resonance imaging (MRI) modalities. A porous polymeric material with these properties is desirable in medical device development for applications requiring thermoresponsive tissue scaffolds with clinical imaging capabilities. Dual modality visibility was achieved by chemically incorporating monomers with X-ray visible iodine-motifs and MRI visible monomers with gadolinium content. Physical and thermomechanical characterization showed the effect of increased gadopentetic acid (GPA) on shape memory behavior. Multiple compositions showed brightening effects in pilot, T1-weighted MR imaging. There was a correlation between the polymeric density and X-ray visibility on expanded and compressed SMP foams. Additionally, extractions and indirect cytocompatibility studies were performed to address toxicity concerns of gadolinium-based contrast agents (GBCAs). This material platform has the potential to be used in a variety of medical devices.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Materiais Inteligentes/química , Células 3T3 , Animais , Meios de Contraste/toxicidade , Gadolínio/química , Camundongos , Microscopia Eletrônica de Varredura , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Temperatura de Transição , Raios X
2.
Opt Lett ; 43(20): 5001-5004, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30320804

RESUMO

We employ a concentric sphere Mie scattering model to describe light scattering by pulmonary alveoli and airway surface liquid (ASL). Using this layered sphere model, we compare alveolar scattering at different points along the respiratory cycle and observe the effect of ASL thickness on light scattering in the lung. We have also extrapolated the model to investigate alveolar scattering in various animal models of pulmonary disease. This model of pulmonary light scattering can estimate in vivo optical properties for normal and pathological states, potentially aiding the design of optical systems for diagnosis and investigation of pulmonary pathologies.

3.
Chemphyschem ; 19(16): 1999-2008, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29282877

RESUMO

Despite a number of clinically available hemostats, uncontrolled bleeding is the primary cause of trauma-related death. Shape-memory polymer (SMP) foams have a number of desirable properties for use as hemostats, including shape recovery to enable delivery into bleed sites, biocompatibility, and rapid blood clotting. To expand upon this material system, the current work aims to incorporate phenolic acids, which are honey-based antimicrobial agents, into SMP foams. We showed that cinnamic acid (CA) can be utilized as a monomer in SMP synthesis to provide foams with comparable pore structure and retained cytocompatibility. The addition of CA enabled tuning of thermal and shape-memory properties within clinically relevant ranges. Furthermore, the modified foams demonstrated initial and sustained antimicrobial effects against gram-positive and gram-negative bacteria. These multifunctional scaffolds demonstrate potential for use as hemostats to improve upon current hemorrhage treatments and provide a new tool in tuning the biological and material properties of SMP foams.


Assuntos
Antibacterianos/farmacologia , Cinamatos/farmacologia , Escherichia coli/efeitos dos fármacos , Polímeros/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Cinamatos/química , Testes de Sensibilidade Microbiana , Polímeros/síntese química , Polímeros/química
4.
Nat Mater ; 14(10): 1065-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26213897

RESUMO

Devices resident in the stomach-used for a variety of clinical applications including nutritional modulation for bariatrics, ingestible electronics for diagnosis and monitoring, and gastric-retentive dosage forms for prolonged drug delivery-typically incorporate elastic polymers to compress the devices during delivery through the oesophagus and other narrow orifices in the digestive system. However, in the event of accidental device fracture or migration, the non-degradable nature of these materials risks intestinal obstruction. Here, we show that an elastic, pH-responsive supramolecular gel remains stable and elastic in the acidic environment of the stomach but can be dissolved in the neutral-pH environment of the small and large intestines. In a large animal model, prototype devices with these materials as the key component demonstrated prolonged gastric retention and safe passage. These enteric elastomers should increase the safety profile for a wide range of gastric-retentive devices.


Assuntos
Sistemas de Liberação de Medicamentos , Elastômeros , Polímeros/química , Estômago/efeitos dos fármacos , Animais , Eletrônica , Esôfago/efeitos dos fármacos , Trânsito Gastrointestinal/fisiologia , Géis/química , Humanos , Concentração de Íons de Hidrogênio , Suínos , Comprimidos , Tecnologia Farmacêutica
5.
Macromol Rapid Commun ; 37(23): 1945-1951, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27568830

RESUMO

Polyurethane shape memory polymer (SMP) foams are proposed for use as thrombogenic scaffolds to improve the treatment of vascular defects, such as cerebral aneurysms. However, gas blown SMP foams inherently have membranes between pores, which can limit their performance as embolic tissue scaffolds. Reticulation, or the removal of membranes between adjacent foam pores, is advantageous for improving device performance by increasing blood permeability and cellular infiltration. This work characterizes the effects of cold gas plasma reticulation processes on bulk polyurethane SMP films and foams. Plasma-induced changes on material properties are characterized using scanning electron microscopy, uniaxial tensile testing, goniometry, and free strain recovery experiments. Device specific performance is characterized in terms of permeability, platelet attachment, and cell-material interactions. Overall, plasma reticulated SMP scaffolds show promise as embolic tissue scaffolds due to increased bulk permeability, retained thrombogenicity, and favorable cell-material interactions.


Assuntos
Aneurisma Intracraniano/patologia , Gases em Plasma/química , Poliuretanos/química , Alicerces Teciduais/química , Animais , Células Cultivadas , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Gases em Plasma/síntese química , Poliuretanos/síntese química , Propriedades de Superfície
6.
Polymer (Guildf) ; 56(1): 426-434, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24563552

RESUMO

Injury caused by trauma, burns, surgery, or disease often results in soft tissue loss leading to impaired function and permanent disfiguration. Tissue engineering aims to overcome the lack of viable donor tissue by fabricating synthetic scaffolds with the requisite properties and bioactive cues to regenerate these tissues. Biomaterial scaffolds designed to match soft tissue modulus and strength should also retain the elastomeric and fatigue-resistant properties of the tissue. Of particular design importance is the interconnected porous structure of the scaffold needed to support tissue growth by facilitating mass transport. Adequate mass transport is especially true for newly implanted scaffolds that lack vasculature to provide nutrient flux. Common scaffold fabrication strategies often utilize toxic solvents and high temperatures or pressures to achieve the desired porosity. In this study, a polymerized medium internal phase emulsion (polyMIPE) is used to generate an injectable graft that cures to a porous foam at body temperature without toxic solvents. These poly(ester urethane urea) scaffolds possess elastomeric properties with tunable compressive moduli (20-200 kPa) and strengths (4-60 kPa) as well as high recovery after the first conditioning cycle (97-99%). The resultant pore architecture was highly interconnected with large voids (0.5-2 mm) from carbon dioxide generation surrounded by water-templated pores (50-300 µm). The ability to modulate both scaffold pore architecture and mechanical properties by altering emulsion chemistry was demonstrated. Permeability and form factor were experimentally measured to determine the effects of polyMIPE composition on pore interconnectivity. Finally, initial human mesenchymal stem cell (hMSC) cytocompatibility testing supported the use of these candidate scaffolds in regenerative applications. Overall, these injectable polyMIPE foams show strong promise as a biomaterial scaffold for soft tissue repair.

7.
Macromol Biosci ; 24(3): e2300393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37904644

RESUMO

Achieving surgical success in orthopedic patients with metabolic disease remains a substantial challenge. Diabetic patients exhibit a unique tissue microenvironment consisting of high levels of reactive oxygen species (ROS), which promotes osteoclastic activity and leads to decreased bone healing. Alternative solutions, such as synthetic grafts, incorporating progenitor cells or growth factors, can be costly and have processing constraints. Previously, the potential for thiol-methacrylate networks to sequester ROS while possessing tunable mechanical properties and degradation rates has been demonstrated. In this study, the ability to fabricate thiol-methacrylate interconnected porous scaffolds using emulsion templating to create monoliths with an average porosity of 97.0% is reported. The average pore sizes of the scaffolds range from 27 to 656 µm. The scaffolds can sequester pathologic levels of ROS via hydrogen peroxide consumption and are not impacted by sterilization. Subcutaneous implantation shows no signs of acute toxicity. Finally, in a 6-week bilateral calvarial defect model in Zucker diabetic fatty rats, ROS scaffolds increase new bone volume by 66% over sham defects. Histologic analysis identifies woven bone infiltration throughout the scaffold and neovascularization. Overall, this study suggests that porous thiol-methacrylate scaffolds may improve healing for bone grafting applications where high levels of ROS hinder bone growth.


Assuntos
Diabetes Mellitus , Polímeros , Estirenos , Alicerces Teciduais , Humanos , Ratos , Animais , Engenharia Tecidual , Espécies Reativas de Oxigênio , Ratos Zucker , Porosidade , Metacrilatos , Compostos de Sulfidrila
8.
J Mater Chem B ; 12(15): 3694-3702, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38529581

RESUMO

Thermoresponsive shape memory polymers (SMPs) prepared from UV-curable poly(ε-caprolactone) (PCL) macromers have the potential to create self-fitting bone scaffolds, self-expanding vaginal stents, and other shape-shifting devices. To ensure tissue safety during deployment, the shape actuation temperature (i.e., the melt transition temperature or Tm of PCL) must be reduced from ∼55 °C that is observed for scaffolds prepared from linear-PCL-DA (Mn ∼ 10 kg mol-1). Moreover, increasing the rate of biodegradation would be advantageous, facilitating bone tissue healing and potentially eliminating the need for stent retrieval. Herein, a series of six UV-curable PCL macromers were prepared with linear or 4-arm star architectures and with Mns of 10, 7.5, and 5 kg mol-1, and subsequently fabricated into six porous scaffold compositions (10k, 7.5k, 5k, 10k★, 7.5k★, and 5k★) via solvent casting particulate leaching (SCPL). Scaffolds produced from star-PCL-tetraacrylate (star-PCL-TA) macromers produced pronounced reductions in Tm with decreased Mnversus those formed with the corresponding linear-PCL-diacrylate (linear-PCL-DA) macromers. Scaffolds were produced with the desired reduced Tm profiles: 37 °C < Tm < 55 °C (self-fitting bone scaffold), and Tm ≤ 37 °C (self-expanding stent). As macromer Mn decreased, crosslink density increased while % crystallinity decreased, particularly for scaffolds prepared from star-PCL-TA macromers. While shape memory behavior was retained and radial expansion pressure increased, this imparted a reduction in modulus but with an increase in the rate of degradation.


Assuntos
Poliésteres , Alicerces Teciduais , Temperatura de Transição , Osso e Ossos , Temperatura
9.
Biomed Eng Online ; 12: 103, 2013 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-24120254

RESUMO

BACKGROUND: Shape memory polymer (SMP) foams are being investigated as an alternative aneurysm treatment method to embolic coils. The goal of both techniques is the reduction of blood flow into the aneurysm and the subsequent formation of a stable thrombus, which prevents future aneurysm rupture. The purpose of this study is to experimentally determine the parameters, permeability and form factor, which are related to the flow resistance imposed by both media when subjected to a pressure gradient. METHODS: The porous media properties-permeability and form factor-of SMP foams and mock embolic coils (MECs) were measured with a pressure gradient method by means of an in vitro closed flow loop. We implemented the Forchheimer-Hazen-Dupuit-Darcy equation to calculate these properties. Mechanically-reticulated SMP foams were fabricated with average cell sizes of 0.7E-3 and 1.1E-3 m, while the MECs were arranged with volumetric packing densities of 11-28%. RESULTS: The permeability of the SMP foams was an order of magnitude lower than that of the MECs. The form factor differed by up to two orders of magnitude and was higher for the SMP foams in all cases. The maximum flow rate of all samples tested was within the inertial laminar flow regime, with Reynolds numbers ranging between 1 and 35. CONCLUSIONS: The SMP foams impose a greater resistance to fluid flow compared to MECs, which is a result of increased viscous and inertial losses. These results suggest that aneurysms treated with SMP foam will have flow conditions more favorable for blood stasis than those treated with embolic coils having packing densities ≤ 28%.


Assuntos
Procedimentos Endovasculares/instrumentação , Polímeros , Hidrodinâmica , Aneurisma Intracraniano/cirurgia , Permeabilidade , Porosidade
10.
Radiat Phys Chem Oxf Engl 1993 ; 83: 111-121, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23226930

RESUMO

The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities-that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs.

11.
Med Phys ; 50(8): 4809-4815, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37202923

RESUMO

BACKGROUND: Clinically relevant models that enable certain tasks such as calibration of medical imaging devices or techniques, device validation, training healthcare professionals, and more are vital to research throughout the medical field and are referred to as phantoms. Phantoms range in complexity from a vile of water to complex designs that emulate in vivo properties. PURPOSE: Specific phantoms that model the lungs have focused on replication of tissue properties but lack replication of the anatomy. This limits the use across multiple imaging modalities and for device testing when anatomical considerations as well as tissue properties are needed. This work reports a lung phantom design utilizing materials that accurately mimic the ultrasound and magnetic resonance imaging (MRI) properties of in vivo lungs and includes relevant anatomical equivalence. METHODS: The tissue mimicking materials were selected based on published studies of the materials, through qualitative comparisons of the materials with ultrasound imaging, and quantitative MRI relaxation values. A PVC ribcage was used as the structural support. The muscle/fat combined layer and the skin layer were constructed with various types of silicone with graphite powder added as a scattering agent where appropriate. Lung tissue was mimicked with silicone foam. The pleural layer was replicated by the interface between the muscle/fat layer and the lung tissue layer, requiring no additional material. RESULTS: The design was validated by accurately mimicking the distinct tissue layers expected with in vivo lung ultrasound while maintaining tissue-mimicking relaxation values in MRI as compared to reported values. Comparisons between the muscle/fat material and in vivo muscle/fat tissue demonstrated a 1.9% difference in T1 relaxation and a 19.8% difference in T2 relaxation. CONCLUSIONS: Qualitative US and quantitative MRI analysis verified the proposed lung phantom design for accurate modeling of the human lungs.


Assuntos
Músculos , Tórax , Humanos , Imagens de Fantasmas , Tecido Adiposo , Silicones
12.
Biomed Mater Devices ; 1(2): 853-860, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38130883

RESUMO

Lung biopsies are often used to aid in the diagnosis of cancers. However, the procedure carries the dual risk of air (pneumothorax) or blood (hemothorax) filling the pleural cavity, increasing the risk of a collapsed lung and chest intubation. This work demonstrates the effectiveness of a polyurethane-based shape memory polymer foam as a biopsy tract sealant. The impact of diameter, length, pore size, and shape memory effect was evaluated to determine the ideal device design for tract sealing. Characterization in an in vitro benchtop lung model identified that diameter had the largest influence on sealing efficacy, while the length of the device had little to no impact. Finally, evaluation of deployment force demonstrated that devices fabricated from the shape memory polymer foams were easier to deploy than elastic foams. Following characterization, down-selected device designs were combined with radiopaque markers for use in image-guided based procedures. Furthermore, the introduction of the markers or sterilization did not impact the ability of the devices to seal the biopsy tract and led to a decrease in the deployment force. Overall, these results demonstrate the potential for polyurethane-based shape memory foam devices to serve as biopsy tract sealant devices that aim to reduce complications, such as pneumothorax, from occurring.

13.
ACS Biomater Sci Eng ; 9(2): 642-650, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36729490

RESUMO

Lung tissue biopsies can result in a leakage of blood (hemothorax) and air (pneumothorax) from the biopsy tract, which threatens the patient with a collapsed lung and other complications. We have developed a lung biopsy tract sealant based on a thiol-ene-crosslinked PEG hydrogel and polyurethane shape memory polymer (SMP) foam composite. After insertion into biopsy tracts, the PEG hydrogel component contributes to sealing through water-driven swelling, whereas the SMP foam contributes to sealing via thermal actuation. The gelation kinetics, swelling properties, and rheological properties of various hydrogel formulations were studied to determine the optimal formulation for composite fabrication. Composites were then fabricated via vacuum infiltration of the PEG hydrogel precursors into the SMP foam followed by thermal curing. After drying, the composites were crimped to enable insertion into biopsy tracts. Characterization revealed that the composites exhibited a slight delay in shape recovery compared to control SMP foams. However, the composites were still able to recover their shape in a matter of minutes. Cytocompatibility testing showed that leachable byproducts can be easily removed by washing and washed composites were not cytotoxic to mouse lung fibroblasts (L929s). Benchtop testing demonstrated that the composites can be easily deployed through a cannula, and the working time for deployment after exposure to water was 2 min. Furthermore, testing in an in vitro lung model demonstrated that the composites were able to effectively seal a lung biopsy tract and prevent air leakage. Collectively, these results show that the PEG hydrogel/SMP foam composites have the potential to be used as lung biopsy tract sealants to prevent pneumothorax post-lung biopsy.


Assuntos
Pneumotórax , Materiais Inteligentes , Animais , Camundongos , Hidrogéis , Materiais Biocompatíveis , Biópsia
14.
J Colloid Interface Sci ; 625: 237-247, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35716618

RESUMO

INTRODUCTION: Measuring in vivo degradation for polymeric scaffolds is critical for analysis of biocompatibility. Traditionally, histology has been used to estimate mass loss in scaffolds, allowing for simultaneous evaluation of mass loss and the biologic response to the implant. Oxidatively degradable shape memory polyurethane (SMP) foams have been implemented in two vascular occlusion devices: peripheral embolization device (PED) and neurovascular embolization device (NED). This work explores the errors introduced when using histological sections to evaluate mass loss. METHODS: Models of the SMP foams were created to mimic the device geometry and the tetrakaidekahedral structure of the foam pore. These models were degraded in Blender for a wide range of possible degradation amounts and the mass loss was estimated using m sections. RESULTS: As the number of sections (m) used to estimate mass loss for a volume increased the sampling error decreased and beyond m = 5, the decrease in error was insignificant. NED population and sampling errors were higher than for PED scenarios. When m ≥ 5, the averaged sampling error was below 1.5% for NED and 1% for PED scenarios. DISCUSSION/CONCLUSION: This study establishes a baseline sampling error for estimating randomly degraded porous scaffolds using a sectional method. Device geometry and the stage of mass loss influence the sampling error. Future studies will use non-random degradation to further investigate in vivo mass loss scenarios.


Assuntos
Polímeros , Poliuretanos , Porosidade
15.
ACS Appl Bio Mater ; 5(6): 2633-2642, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35658422

RESUMO

First metatarsophalangeal joint (MPJ) arthroplasty procedures are a common podiatric procedure. However, almost one-third of cases require revision surgeries because of nonunions. Revision or salvage surgery requires more extensive hardware and bone grafts to recreate the first metatarsal. Unfortunately, salvage surgeries have a similar rate of failure attributed to delayed healing, bone graft dissolution, and the lack of bone ingrowth. Furthermore, patients who suffer from neuropathic comorbidities such as diabetes suffer from a diminished healing capacity. An increase in proinflammatory factors and the high presence of reactive oxygen species (ROS) present in diabetics are linked to lower fusion rates. To this end, there is a need for a clinically relevant bone graft to promote bone fusions in patients with neuropathic comorbidities. Incorporating thiol-ene networks for bone scaffolds has demonstrated increased osteogenic biomarkers over traditional polymeric materials. Furthermore, thiol-ene networks can act as antioxidants. Sulfide linkages within the network have an inherent ability to consume radical oxygen to create sulfoxide and sulfone groups. These unique properties of thiol-ene networks make them a promising candidate as bone grafts for diabetic patients. In this work, we propose a thiol-ene biomaterial to address the current limitations of MPJ fusion in diabetics by characterizing mechanical properties, degradation rates under accelerated conditions, and oxidative responsiveness under pathophysiologic conditions. We also demonstrated that thiol-ene-based materials could reduce the number of hydroxyl radicals associated with neuropathic comorbidities.


Assuntos
Polímeros , Compostos de Sulfidrila , Humanos , Teste de Materiais
16.
Nanomaterials (Basel) ; 12(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35159750

RESUMO

The ability to treat complex medical issues often requires dynamic and versatile materials. Electrospinning is a fabrication technique which produces nano-/microfibers that can mimic the extracellular matrix of many biological tissues while shape memory polymers allow for geometric changes in devices upon implantation. Here, we present the fabrication of electrospun polyurethane which exhibits the shape memory effect. To improve the mechanical and shape memory properties of this system, we incorporate vinyl side chains in the polymer backbone which enable crosslinking via thiol-ene click chemistry post fabrication. We also discuss a novel technique to improve photoinitiated crosslinking for electrospun materials. A material with these properties is potentially beneficial for various medical applications, such as vascular anastomosis, and the characterization of this material will be valuable in directing those applications.

17.
Polymers (Basel) ; 14(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35683960

RESUMO

Amorphous shape memory polymer foams are currently used as components in vascular occlusion medical devices such as the IMPEDE and IMPEDE-FX Embolization Plugs. Body temperature and moisture-driven actuation of the polymeric foam is necessary for vessel occlusion and the rate of expansion is a function of physio-chemical material properties. In this study, concentrations of the chemical blowing agent for the foam were altered and the resulting effects on morphology, thermal and chemical properties, and actuation rates were studied. Lower concentration of chemical blowing agent yielded foams with thick foam struts due to less bubble formation during the foaming process. Foams with thicker struts also had high tensile modulus and lower strain at break values compared to the foams made with higher blowing agent concentration. Additionally, less blowing agent resulted in foams with a lower glass transition temperature due to less urea formation during the foaming reaction. This exploratory study provides an approach to control thermo-mechanical foam properties and morphology by tuning concentrations of a foaming additive. This work aims to broaden the applications of shape memory polymer foams for medical use.

18.
J Biomed Mater Res B Appl Biomater ; 110(7): 1535-1544, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35090200

RESUMO

Brain aneurysms can be treated with embolic coils using minimally invasive approaches. It is advantageous to modulate the biologic response of platinum embolic coils. Our previous studies demonstrated that shape memory polymer (SMP) foam coated embolization coils (FCC) devices demonstrate enhanced healing responses in animal models compared with standard bare platinum coil (BPC) devices. Macrophages are the most prevalent immune cell type that coordinate the greater immune response to implanted materials. Hence, we hypothesized that the highly porous SMP foam coatings on embolic coils activate a pro-regenerative healing phenotype. To test this hypothesis, we analyzed the number and type of infiltrating macrophages in FCC or BPC devices implanted in a rabbit elastase aneurysm model. FCC devices elicited a great number of infiltration macrophages, skewed significantly to a pro-regenerative M2-like phenotype 90 days following implantation. We devised an in vitro assay, where monocyte-derived macrophages were placed in close association with FCC or BPC devices for 6-72 h. Macrophages encountering SMP FCC-devices demonstrated highly mixed activation phenotypes at 6 h, heavily skewing toward an M2-like phenotype by 72 h, compared with macrophages encountering BPC devices. Macrophage activation was evaluated using gene expression analysis, and secreted cytokine evaluation. Together, our results demonstrate that FCC devices promoted a pro-regenerative macrophage activation phenotype, compared with BPC devices. Our in vitro findings corroborate with in vivo observations that SMP-based modification of embolic coils can promote better healing of the aneurysm site, by sustaining a pro-healing macrophage phenotype.


Assuntos
Embolização Terapêutica , Aneurisma Intracraniano , Materiais Inteligentes , Animais , Prótese Vascular , Aneurisma Intracraniano/cirurgia , Ativação de Macrófagos , Platina , Coelhos
19.
Polymers (Basel) ; 14(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36236069

RESUMO

Shape-memory polymer (SMP) polyurethane foams have been applied as embolic devices and implanted in multiple animal models. These materials are oxidatively degradable and it is critical to quantify and characterize the degradation for biocompatibility assessments. An image-based method using high-resolution and magnification scans of histology sections was used to estimate the mass loss of the peripheral and neurovascular embolization devices (PED, NED). Detailed analysis of foam microarchitecture (i.e., struts and membranes) was used to estimate total relative mass loss over time. PED foams implanted in porcine arteries showed a degradation rate of ~0.11% per day as evaluated at 30-, 60-, and 90-day explant timepoints. NED foams implanted in rabbit carotid elastase aneurysms showed a markedly faster rate of degradation at ~1.01% per day, with a clear difference in overall degradation between 30- and 90-day explants. Overall, membranes degraded faster than the struts. NEDs use more hydrophobic foam with a smaller pore size (~150-400 µm) compared to PED foams (~800-1200 µm). Previous in vitro studies indicated differences in the degradation of the two polymer systems, but not to the magnitude seen in vivo. Implant location, animal species, and local tissue health are among the hypothesized reasons for different degradation rates.

20.
J Mater Chem B ; 9(18): 3826-3837, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33979417

RESUMO

"Self-fitting" shape memory polymer (SMP) scaffolds prepared as semi-interpenetrating networks (semi-IPNs) with crosslinked linear-poly(ε-caprolactone)-diacrylate (PCL-DA, Mn∼10 kg mol-1) and linear-poly(l-lactic acid) (PLLA, Mn∼15 kg mol-1) [75/25 wt%] exhibited robust mechanical properties and accelerated degradation rates versus a PCL-DA scaffold control. However, their potential to treat irregular craniomaxillofacial (CMF) bone defects is limited by their relatively high fitting temperature (Tfit∼55 °C; related to the Tm of PCL) required for shape recovery (i.e. expansion) and subsequent shape fixation during press fitting of the scaffold, which can be harmful to surrounding tissue. Additionally, the viscosity of the solvent-based precursor solutions, cast over a fused salt template during fabrication, can limit scaffold size. Thus, in this work, analogous semi-IPN SMP scaffolds were formed with a 4-arm star-PCL-tetracryalate (star-PCL-TA) (Mn∼10 kg mol-1) and star-PLLA (Mn∼15 kg mol-1). To assess the impact of a star-polymer architecture, four semi-IPN compositions were prepared: linear-PCL-DA/linear-PLLA (L/L), linear-PCL-DA/star-PLLA (L/S), star-PCL-TA/linear-PLLA (S/L) and star-PCL-TA/star-PLLA (S/S). Two PCL controls were also prepared: LPCL (i.e. 100% linear-PCL-DA) and SPCL (i.e. 100% star-PCL-TA). The S/S semi-IPN scaffold exhibited particularly desirable properties. In addition to achieving a lower, tissue-safe Tfit (∼45 °C), it exhibited the fastest rate of degradation which is anticipated to more favourably permit neotissue infiltration. The radial expansion pressure exerted by the S/S semi-IPN scaffold at Tfit was greater than that of LPCL, which is expected to enhance osseointegration and mechanical stability. The intrinsic viscosity of the S/S semi-IPN macromer solution was also reduced such that larger scaffold specimens could be prepared.


Assuntos
Materiais Inteligentes/química , Animais , Doenças Ósseas/terapia , Força Compressiva , Modelos Animais de Doenças , Poliésteres/química , Porosidade , Ratos , Materiais Inteligentes/metabolismo , Materiais Inteligentes/uso terapêutico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA