Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Genet Epidemiol ; 47(1): 95-104, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36378773

RESUMO

The clustering of proteins is of interest in cancer cell biology. This article proposes a hierarchical Bayesian model for protein (variable) clustering hinging on correlation structure. Starting from a multivariate normal likelihood, we enforce the clustering through prior modeling using angle-based unconstrained reparameterization of correlations and assume a truncated Poisson distribution (to penalize a large number of clusters) as prior on the number of clusters. The posterior distributions of the parameters are not in explicit form and we use a reversible jump Markov chain Monte Carlo based technique is used to simulate the parameters from the posteriors. The end products of the proposed method are estimated cluster configuration of the proteins (variables) along with the number of clusters. The Bayesian method is flexible enough to cluster the proteins as well as estimate the number of clusters. The performance of the proposed method has been substantiated with extensive simulation studies and one protein expression data with a hereditary disposition in breast cancer where the proteins are coming from different pathways.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Teorema de Bayes , Neoplasias da Mama/genética , Modelos Genéticos , Análise por Conglomerados , Cadeias de Markov , Método de Monte Carlo
2.
J Biopharm Stat ; : 1-17, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38562014

RESUMO

Bayesian logistic regression model (BLRM) is widely used to guide dose escalation decisions in phase 1 oncology trials. An important feature of BLRM design is the appealing safety performance due to its escalation with overdose control (EWOC). However, some recent literature indicates that BLRM with EWOC may have a relatively low probability to find the maximum tolerated dose (MTD) compared to some other dose escalation designs. This work discusses this design problem and proposes a practical solution to improve the performance of BLRM design. Specifically, we suggest increasing the EWOC cutoff from routine value 0.25 to a value between 0.3 and 0.4, which will increase the chance of finding the correct MTD with minimal compromise to overdosing risk. Our comparative simulation studies indicate that BLRM with an increased EWOC cutoff has comparable operating characteristics on the correct MTD selection and over-toxicity control as other dose escalation designs (BOIN, mTPI, keyboard, etc.). Moreover, we compare the methodology and operating characteristics of BLRM designs with various decision rules that allow more flexible overdosing control. A case study of dose escalation in a recent phase 1 oncology trial is provided to show how BLRM with optimal EWOC cutoff operates well in practice.

3.
Biometrics ; 79(1): 292-303, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34528237

RESUMO

We develop a new method for variable selection in a nonlinear additive function-on-scalar regression (FOSR) model. Existing methods for variable selection in FOSR have focused on the linear effects of scalar predictors, which can be a restrictive assumption in the presence of multiple continuously measured covariates. We propose a computationally efficient approach for variable selection in existing linear FOSR using functional principal component scores of the functional response and extend this framework to a nonlinear additive function-on-scalar model. The proposed method provides a unified and flexible framework for variable selection in FOSR, allowing nonlinear effects of the covariates. Numerical analysis using simulation study illustrates the advantages of the proposed method over existing variable selection methods in FOSR even when the underlying covariate effects are all linear. The proposed procedure is demonstrated on accelerometer data from the 2003-2004 cohorts of the National Health and Nutrition Examination Survey (NHANES) in understanding the association between diurnal patterns of physical activity and demographic, lifestyle, and health characteristics of the participants.


Assuntos
Dinâmica não Linear , Humanos , Inquéritos Nutricionais , Modelos Lineares , Simulação por Computador
4.
Small ; : e2205038, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494176

RESUMO

The search for inexpensive and all-electric tunable methods for portable and fast recognition and discrimination between various chiral enantiomers, mainly those found in the gas phase, has been one of the most challenging tasks in the field of analytical chemistry. The current article reports on a chiral sensitive electric architecture (CSEA) of a helical polyaniline (PANI)@carbon nanotube (CNT) hybrid quantum-wire based field effect transistor (FET) platform. The CSEA architecture exhibits gate-controlled-channel-chirality modulation for the selective distinction of Limonene (S(+)/R(-)) at ≈12 V intervals. Typical gate-modulated selectivity of S(+)-Limonene and R(-)-Limonene using two opposite helically turned hybrids, namely as, S-PANI@CNT and R-PANI@CNT are 6.5 and 2.8, respectively. Theoretical analysis and modelling relates the gas-phase chiral quantum probe with spin-channel modulation in CNT by Rashba spin-orbit interaction. This is achieved by applied gate voltage, CNT's unique curved surface, adsorbed chiral adatom induced scattering center on the curved graphitic lattice and helicoid field from a synthetically prepared helical PANI@CNT hybrid interface.

5.
Genet Epidemiol ; 44(3): 272-282, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31943371

RESUMO

Testing the association between single-nucleotide polymorphism (SNP) effects and a response is often carried out through kernel machine methods based on least squares, such as the sequence kernel association test (SKAT). However, these least-squares procedures are designed for a normally distributed conditional response, which may not apply. Other robust procedures such as the quantile regression kernel machine (QRKM) restrict the choice of the loss function and only allow inference on conditional quantiles. We propose a general and robust kernel association test with a flexible choice of the loss function, no distributional assumptions, and has SKAT and QRKM as special cases. We evaluate our proposed robust association test (RobKAT) across various data distributions through a simulation study. When errors are normally distributed, RobKAT controls type I error and shows comparable power with SKAT. In all other distributional settings investigated, our robust test has similar or greater power than SKAT. Finally, we apply our robust testing method to data from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) clinical trial to detect associations between selected genes including the major histocompatibility complex (MHC) region on chromosome six and neurotropic herpesvirus antibody levels in schizophrenia patients. RobKAT detected significant association with four SNP sets (HST1H2BJ, MHC, POM12L2, and SLC17A1), three of which were undetected by SKAT.


Assuntos
Algoritmos , Estudos de Associação Genética , Simulação por Computador , Humanos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética
6.
Bioinformatics ; 36(13): 3951-3958, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369552

RESUMO

MOTIVATION: It is well known that the integration among different data-sources is reliable because of its potential of unveiling new functionalities of the genomic expressions, which might be dormant in a single-source analysis. Moreover, different studies have justified the more powerful analyses of multi-platform data. Toward this, in this study, we consider the circadian genes' omics profile, such as copy number changes and RNA-sequence data along with their survival response. We develop a Bayesian structural equation modeling coupled with linear regressions and log normal accelerated failure-time regression to integrate the information between these two platforms to predict the survival of the subjects. We place conjugate priors on the regression parameters and derive the Gibbs sampler using the conditional distributions of them. RESULTS: Our extensive simulation study shows that the integrative model provides a better fit to the data than its closest competitor. The analyses of glioblastoma cancer data and the breast cancer data from TCGA, the largest genomics and transcriptomics database, support our findings. AVAILABILITY AND IMPLEMENTATION: The developed method is wrapped in R package available at https://github.com/MAITYA02/semmcmc. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Genômica , Teorema de Bayes , Biologia Computacional , Humanos , Análise de Classes Latentes , Software
7.
Chemometr Intell Lab Syst ; 2122021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35068632

RESUMO

BACKGROUND: The endogenous circadian clock, which controls daily rhythms in the expression of at least half of the mammalian genome, has a major influence on cell physiology. Consequently, disruption of the circadian system is associated with wide range of diseases including cancer. While several circadian clock genes have been associated with cancer progression, little is known about the survival when two or more platforms are considered together. Our goal was to determine if survival outcomes are associated with circadian clock function. To accomplish this goal, we developed a Bayesian hierarchical survival model coupled with the global local shrinkage prior and applied this model to available RNASeq and Copy Number Variation data to select significant circadian genes associates with cancer progression. RESULTS: Using a Bayesian shrinkage approach with the Bayesian accelerated failure time (AFT) model we showed the circadian clock associated gene DEC1 is positively correlated to survival outcome in breast cancer patients. The R package circgene implementing the methodology is available at https://github.com/MAITYA02/circgene. CONCLUSIONS: The proposed Bayesian hierarchical model is the first shrinkage prior based model in its kind which integrates two omics platforms to identify the significant circadian gene for cancer survival.

8.
Lifetime Data Anal ; 27(1): 64-90, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33236257

RESUMO

In this paper, we propose an innovative method for jointly analyzing survival data and longitudinally measured continuous and ordinal data. We use a random effects accelerated failure time model for survival outcomes, a linear mixed model for continuous longitudinal outcomes and a proportional odds mixed model for ordinal longitudinal outcomes, where these outcome processes are linked through a set of association parameters. A primary objective of this study is to examine the effects of association parameters on the estimators of joint models. The model parameters are estimated by the method of maximum likelihood. The finite-sample properties of the estimators are studied using Monte Carlo simulations. The empirical study suggests that the degree of association among the outcome processes influences the bias, efficiency, and coverage probability of the estimators. Our proposed joint model estimators are approximately unbiased and produce smaller mean squared errors as compared to the estimators obtained from separate models. This work is motivated by a large multicenter study, referred to as the Genetic and Inflammatory Markers of Sepsis (GenIMS) study. We apply our proposed method to the GenIMS data analysis.


Assuntos
Estudos Longitudinais , Análise de Sobrevida , Algoritmos , Fragilidade , Humanos , Método de Monte Carlo , Modelos de Riscos Proporcionais
9.
Angew Chem Int Ed Engl ; 60(4): 1897-1902, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33045127

RESUMO

(NDI)Ni2 catalysts (NDI=naphthyridine-diimine) promote cyclopropanation reactions of 1,3-dienes using (Me3 Si)CHN2 . Mechanistic studies reveal that a metal carbene intermediate is not part of the catalytic cycle. The (NDI)Ni2 (CHSiMe3 ) complex was independently synthesized and found to be unreactive toward dienes. Based on DFT models, we propose an alternative mechanism that begins with a Ni2 -mediated coupling of (Me3 Si)CHN2 and the diene. N2 extrusion followed by radical C-C bond formation generates the cyclopropane product. This model reproduces the experimentally observed regioselectivity and diastereoselectivity of the reaction.

10.
Biometrics ; 76(1): 316-325, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31393003

RESUMO

Accurate prognostic prediction using molecular information is a challenging area of research, which is essential to develop precision medicine. In this paper, we develop translational models to identify major actionable proteins that are associated with clinical outcomes, like the survival time of patients. There are considerable statistical and computational challenges due to the large dimension of the problems. Furthermore, data are available for different tumor types; hence data integration for various tumors is desirable. Having censored survival outcomes escalates one more level of complexity in the inferential procedure. We develop Bayesian hierarchical survival models, which accommodate all the challenges mentioned here. We use the hierarchical Bayesian accelerated failure time model for survival regression. Furthermore, we assume sparse horseshoe prior distribution for the regression coefficients to identify the major proteomic drivers. We borrow strength across tumor groups by introducing a correlation structure among the prior distributions. The proposed methods have been used to analyze data from the recently curated "The Cancer Proteome Atlas" (TCPA), which contains reverse-phase protein arrays-based high-quality protein expression data as well as detailed clinical annotation, including survival times. Our simulation and the TCPA data analysis illustrate the efficacy of the proposed integrative model, which links different tumors with the correlated prior structures.


Assuntos
Biometria/métodos , Neoplasias/metabolismo , Neoplasias/mortalidade , Proteoma/metabolismo , Proteômica/estatística & dados numéricos , Teorema de Bayes , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Cadeias de Markov , Modelos Estatísticos , Método de Monte Carlo , Prognóstico , Análise Serial de Proteínas/estatística & dados numéricos , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA