RESUMO
OBJECTIVES: We hypothesize that the combined use of MRI cortical thickness measurement and subcortical gray matter volumetry could provide an early and accurate in vivo assessment of the structural impact of cardiac arrest and therefore could be used for long-term neuroprognostication in this setting. DESIGN: Prospective cohort study. SETTING: Five Intensive Critical Care Units affiliated to the University in Toulouse (France), Paris (France), Clermont-Ferrand (France), Liège (Belgium), and Monza (Italy). PATIENTS: High-resolution anatomical T1-weighted images were acquired in 126 anoxic coma patients ("learning" sample) 16 ± 8 days after cardiac arrest and 70 matched controls. An additional sample of 18 anoxic coma patients, recruited in Toulouse, was used to test predictive model generalization ("test" sample). All patients were followed up 1 year after cardiac arrest. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Cortical thickness was computed on the whole cortical ribbon, and deep gray matter volumetry was performed after automatic segmentation. Brain morphometric data were employed to create multivariate predictive models using learning machine techniques. Patients displayed significantly extensive cortical and subcortical brain volumes atrophy compared with controls. The accuracy of a predictive classifier, encompassing cortical and subcortical components, has a significant discriminative power (learning area under the curve = 0.87; test area under the curve = 0.96). The anatomical regions which volume changes were significantly related to patient's outcome were frontal cortex, posterior cingulate cortex, thalamus, putamen, pallidum, caudate, hippocampus, and brain stem. CONCLUSIONS: These findings are consistent with the hypothesis of pathologic disruption of a striatopallidal-thalamo-cortical mesocircuit induced by cardiac arrest and pave the way for the use of combined brain quantitative morphometry in this setting.
Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Parada Cardíaca/patologia , Adulto , Córtex Cerebelar/diagnóstico por imagem , Córtex Cerebelar/patologia , Coma/diagnóstico por imagem , Coma/patologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos ProspectivosRESUMO
Posteromedial cortex (PMC) is a highly segregated and dynamic core, which appears to play a critical role in internally/externally directed cognitive processes, including conscious awareness. Nevertheless, neuroimaging studies on acquired disorders of consciousness, have traditionally explored PMC as a homogenous and indivisible structure. We suggest that a fine-grained description of intrinsic PMC topology during coma, could expand our understanding about how this cortical hub contributes to consciousness generation and maintain, and could permit the identification of specific markers related to brain injury mechanism and useful for neurological prognostication. To explore this, we used a recently developed voxel-based unbiased approach, named functional connectivity density (CD). We compared 27 comatose patients (15 traumatic and 12 anoxic), to 14 age-matched healthy controls. The patients' outcome was assessed 3 months later using Coma Recovery Scale-Revised (CRS-R). A complex pattern of decreased and increased connections was observed, suggesting a network imbalance between internal/external processing systems, within PMC during coma. The number of PMC voxels with hypo-CD positive correlation showed a significant negative association with the CRS-R score, notwithstanding aetiology. Traumatic injury specifically appeared to be associated with a greater prevalence of hyper-connected (negative correlation) voxels, which was inversely associated with patient neurological outcome. A logistic regression model using the number of hypo-CD positive and hyper-CD negative correlations, accurately permitted patient's outcome prediction (AUC = 0.906, 95%IC = 0.795-1). These points might reflect adaptive plasticity mechanism and pave the way for innovative prognosis and therapeutics methods.