RESUMO
Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.The MyPathway multiple-basket study (ClinicalTrials.gov identifier: NCT02091141) is evaluating targeted therapies in nonindicated tumors with relevant molecular alterations. We assessed pertuzumab + trastuzumab in a tissue-agnostic cohort of adult patients with human epidermal growth factor receptor 2 (HER2)-amplified and/or -overexpressed and/or -mutated solid tumors. The primary end point was objective response rate (ORR); secondary end points included survival and safety. At data cutoff (March 2022), 346 patients with HER2 amplification and/or overexpression with/without HER2 mutations (n = 263), or HER2 mutations alone (n = 83) had been treated. Patients with HER2 amplification and/or overexpression had an ORR of 25.9% (68/263, 95% CI, 20.7 to 31.6), including five complete responses (urothelial [n = 2], salivary gland [n = 2], and colon [n = 1] cancers). Activity was higher in those with wild-type (ORR, 28.1%) versus mutated KRAS (ORR, 7.1%). Among patients with HER2 amplification, ORR was numerically higher in patients with immunohistochemistry (IHC) 3+ (41.0%; 32/78) or 2+ (21.9%; 7/32), versus 1+ (8.3%; 1/12) or no expression (0%; 0/20). In patients with HER2 mutations alone, ORR was 6.0% (5/83, 95% CI, 2.0 to 13.5). Pertuzumab + trastuzumab showed activity in various HER2-amplified and/or -overexpressed tumors with wild-type KRAS, with the range of activity dependent on tumor type, but had limited activity in the context of KRAS mutations, HER2 mutations alone, or 0-1+ HER2 expression.
Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Adulto , Humanos , Trastuzumab/efeitos adversos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor ErbB-2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversosRESUMO
Enhancing the efficacy of proteasome inhibitors (PI) is a central goal in myeloma therapy. We proposed that signaling-level responses after PI may reveal new mechanisms of action that can be therapeutically exploited. Unbiased phosphoproteomics after treatment with the PI carfilzomib surprisingly demonstrates the most prominent phosphorylation changes on splicing related proteins. Spliceosome modulation is invisible to RNA or protein abundance alone. Transcriptome analysis after PI demonstrates broad-scale intron retention, suggestive of spliceosome interference, as well as specific alternative splicing of protein homeostasis machinery components. These findings lead us to evaluate direct spliceosome inhibition in myeloma, which synergizes with carfilzomib and shows potent anti-tumor activity. Functional genomics and exome sequencing further support the spliceosome as a specific vulnerability in myeloma. Our results propose splicing interference as an unrecognized modality of PI mechanism, reveal additional modes of spliceosome modulation, and suggest spliceosome targeting as a promising therapeutic strategy in myeloma.
Assuntos
Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteassoma/administração & dosagem , Spliceossomos/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Feminino , Humanos , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Oligopeptídeos/administração & dosagem , Splicing de RNA/efeitos dos fármacos , Spliceossomos/genética , Spliceossomos/metabolismo , Spliceossomos/microbiologiaRESUMO
Patient-derived xenografts (PDXs) are an essential pre-clinical resource for investigating tumor biology. However, cellular heterogeneity within and across PDX tumors can strongly impact the interpretation of PDX studies. Here, we generated a multi-modal, large-scale dataset to investigate PDX heterogeneity in metastatic colorectal cancer (CRC) across tumor models, spatial scales and genomic, transcriptomic, proteomic and imaging assay modalities. To showcase this dataset, we present analysis to assess sources of PDX variation, including anatomical orientation within the implanted tumor, mouse contribution, and differences between replicate PDX tumors. A unique aspect of our dataset is deep characterization of intra-tumor heterogeneity via immunofluorescence imaging, which enables investigation of variation across multiple spatial scales, from subcellular to whole tumor levels. Our study provides a benchmark data resource to investigate PDX models of metastatic CRC and serves as a template for future, quantitative investigations of spatial heterogeneity within and across PDX tumor models.
Assuntos
Neoplasias do Colo/patologia , Modelos Animais de Doenças , Xenoenxertos/patologia , Animais , Genômica , Humanos , Camundongos , Metástase Neoplásica , Proteômica , TranscriptomaRESUMO
ERα phosphorylation at hinge site S294 (pS294) was recently shown to be essential for ER-dependent gene transcription and mediated by an unknown cyclin-dependent kinase (CDK). This study was undertaken to identify the exact CDK pathway mediating pS294 formation, and to determine if this phosphorylation event occurs with, and can be targeted to treat, the ligand-independent growth of breast cancers expressing endocrine-refractory ESR1 mutations. Using a newly developed anti-pS294 monoclonal antibody, a combination of CDK specific siRNA knockdown studies and a broad panel of CDK selective inhibitors against ligand (E2)-stimulated MCF7 cells, we first identified CDK2 as the primary mediator of pS294 formation and showed that CDK2-selective inhibitors like Dinaciclib, but not CDK4/6 inhibitors like Palbociclib, can selectively prevent pS294 formation and repress ER-dependent gene expression. We then expressed the ER-activating mutations ERmut(Y537S) and ERmut(D538G) in MCF7 cells, and demonstrated their ability to induce ligand-independent and tamoxifen-resistant growth, associated with constitutive and CDK2-dependent pS294 expression. Following robust growth of E2-independent and TAM-resistant MCF7mutER(Y537S) tumors in vivo, nude mice were also treated with either Dinaciclib or Palbociclib at doses and injection schedules unable to retard tumor growth as single agents; the TAM plus Palbociclib combination arrested further tumor growth without affecting pS294 formation, while the TAM plus Dinaciclib combination produced tumor regression associated with loss of pS294 expression. These findings, and our proposed mechanistic model, provide new rationale for the clinical evaluation of CDK2 inhibitors given in combination with endocrine agents as a new treatment strategy against ESR1 mutation expressing breast cancers.