Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Bioorg Med Chem ; 88-89: 117333, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37236021

RESUMO

Butyrylcholinesterase (BuChE) and amyloid ß (Aß) aggregation remain important biological target and mechanism in the search for effective treatment of Alzheimer's disease. Simultaneous inhibition thereof by the application of multifunctional agents may lead to improvement in terms of symptoms and causes of the disease. Here, we present the rational design, synthesis, biological evaluation and molecular modelling studies of novel series of fluorene-based BuChE and Aß inhibitors with drug-like characteristics and advantageous Central Nervous System Multiparameter Optimization scores. Among 17 synthesized and tested compounds, we identified 22 as the most potent eqBuChE inhibitor with IC50 of 38 nM and 37.4% of Aß aggregation inhibition at 10 µM. Based on molecular modelling studies, including molecular dynamics, we determined the binding mode of the compounds within BuChE and explained the differences in the activity of the two enantiomers of compound 22. A novel series of fluorenyl compounds meeting the drug-likeness criteria seems to be a promising starting point for further development as anti-Alzheimer agents.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Acetilcolinesterase/metabolismo , Desenho de Fármacos , Estrutura Molecular , Simulação de Acoplamento Molecular
2.
Molecules ; 28(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36615435

RESUMO

The multitarget-directed ligands demonstrating affinity to histamine H3 receptor and additional cholinesterase inhibitory potency represent a promising strategy for research into the effective treatment of Alzheimer's disease. In this study, a novel series of benzophenone derivatives was designed and synthesized. Among these derivatives, we identified compound 6 with a high affinity for H3R (Ki = 8 nM) and significant inhibitory activity toward BuChE (IC50 = 172 nM and 1.16 µM for eqBuChE and hBuChE, respectively). Further in vitro studies revealed that compound 6 (4-fluorophenyl) (4-((5-(piperidin-1-yl)pentyl)oxy)phenyl)methanone) displays moderate metabolic stability in mouse liver microsomes, good permeability with a permeability coefficient value (Pe) of 6.3 × 10-6 cm/s, and its safety was confirmed in terms of hepatotoxicity in the HepG2 cell line. Therefore, we investigated the in vivo activity of compound 6 in the Passive Avoidance Test and the Formalin Test. While compound 6 did not show a statistically significant influence on memory and learning, it showed analgesic properties in both acute (ED50 = 20.9 mg/kg) and inflammatory (ED50 = 17.5 mg/kg) pain.


Assuntos
Doença de Alzheimer , Receptores Histamínicos H3 , Camundongos , Animais , Colinesterases/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Histamina , Receptores Histamínicos H3/metabolismo , Inibidores da Colinesterase/farmacologia , Receptores Histamínicos , Ligantes , Relação Estrutura-Atividade
3.
Bioorg Chem ; 114: 105129, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34217977

RESUMO

Alzheimer's disease (AD) is a complex and incurable illness that requires the urgent approval of new effective drugs. However, since 2003, no new molecules have shown successful results in clinical trials, thereby making the common "one compound - one target" paradigm questionable. Recently, the multitarget-directed ligand (MTDL) approach has gained popularity, as compounds targeting at least two biological targets may be potentially more effective in treating AD. On the basis of these findings, we designed, synthesized, and evaluated through biological assays a series of derivatives of alicyclic amines linked by an alkoxy bridge to an aromatic lipophilic moiety of [1,1'-biphenyl]-4-carbonitrile. The research results revealed promising biological activity of the obtained compounds toward the chosen targets involved in AD pathophysiology; the compounds showed high affinity (mostly low nanomolar range of Ki values) for human histamine H3 receptors (hH3R) and good nonselective inhibitory potency (micromolar range of IC50 values) against acetylcholinesterase from electric eel (eeAChE) and equine serum butyrylcholinesterase (eqBuChE). Moreover, micromolar/submicromolar potency against human monoamine oxidase B (hMAO B) was detected for some compounds. The study identified compound 5 as a multiple hH3R/eeAChE/eqBuChE/hMAO B ligand (5: hH3R Ki = 9.2 nM; eeAChE IC50 = 2.63 µM; eqBuChE IC50 = 1.30 µM; hMAO B IC50 = 0.60 µM). Further in vitro studies revealed that compound 5 exhibits a mixed type of eeAChE and eqBuChE inhibition, good metabolic stability, and moderate hepatotoxicity effect on HepG2 cells. Finally, compound 5 showed a beneficial effect on scopolamine-induced memory impairments, as assessed by the passive avoidance test, thus revealing the potential of this compound as a promising agent for further optimization for AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Compostos de Bifenilo/farmacologia , Inibidores da Colinesterase/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Receptores Histamínicos H3/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Animais , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Cavalos , Humanos , Ligantes , Estrutura Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade
4.
J Enzyme Inhib Med Chem ; 36(1): 437-449, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33467931

RESUMO

The pyridinium-2-carbaldoximes with quinolinium carboxamide moiety were designed and synthesised as cholinesterase reactivators. The prepared compounds showed intermediate-to-high inhibition of both cholinesterases when compared to standard oximes. Their reactivation ability was evaluated in vitro on human recombinant acetylcholinesterase (hrAChE) and human recombinant butyrylcholinesterase (hrBChE) inhibited by nerve agent surrogates (NIMP, NEMP, and NEDPA) or paraoxon. In the reactivation screening, one compound was able to reactivate hrAChE inhibited by all used organophosphates and two novel compounds were able to reactivate NIMP/NEMP-hrBChE. The reactivation kinetics revealed compound 11 that proved to be excellent reactivator of paraoxon-hrAChE better to obidoxime and showed increased reactivation of NIMP/NEMP-hrBChE, although worse to obidoxime. The molecular interactions of studied reactivators were further identified by in silico calculations. Molecular modelling results revealed the importance of creation of the pre-reactivation complex that could lead to better reactivation of both cholinesterases together with reducing particular interactions for lower intrinsic inhibition by the oxime.


Assuntos
Inibidores da Colinesterase/farmacologia , Compostos de Piridínio/farmacologia , Compostos de Quinolínio/farmacologia , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos de Piridínio/síntese química , Compostos de Piridínio/química , Compostos de Quinolínio/síntese química , Compostos de Quinolínio/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
5.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208297

RESUMO

Neurodegenerative diseases, e.g., Alzheimer's disease (AD), are a key health problem in the aging population. The lack of effective therapy and diagnostics does not help to improve this situation. It is thought that ligands influencing multiple but interconnected targets can contribute to a desired pharmacological effect in these complex illnesses. Histamine H3 receptors (H3Rs) play an important role in the brain, influencing the release of important neurotransmitters, such as acetylcholine. Compounds blocking their activity can increase the level of these neurotransmitters. Cholinesterases (acetyl- and butyrylcholinesterase) are responsible for the hydrolysis of acetylcholine and inactivation of the neurotransmitter. Increased activity of these enzymes, especially butyrylcholinesterase (BuChE), is observed in neurodegenerative diseases. Currently, cholinesterase inhibitors: donepezil, rivastigmine and galantamine are used in the symptomatic treatment of AD. Thus, compounds simultaneously blocking H3R and inhibiting cholinesterases could be a promising treatment for AD. Herein, we describe the BuChE inhibitory activity of H3R ligands. Most of these compounds show high affinity for human H3R (Ki < 150 nM) and submicromolar inhibition of BuChE (IC50 < 1 µM). Among all the tested compounds, 19 (E153, 1-(5-([1,1'-biphenyl]-4-yloxy)pentyl)azepane) exhibited the most promising in vitro affinity for human H3R, with a Ki value of 33.9 nM, and for equine serum BuChE, with an IC50 of 590 nM. Moreover, 19 (E153) showed inhibitory activity towards human MAO B with an IC50 of 243 nM. Furthermore, in vivo studies using the Passive Avoidance Task showed that compound 19 (E153) effectively alleviated memory deficits caused by scopolamine. Taken together, these findings suggest that compound 19 can be a lead structure for developing new anti-AD agents.


Assuntos
Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Aminas/química , Butirilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Monoaminoxidase/química , Receptores Histamínicos H3/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Butirilcolinesterase/metabolismo , Linhagem Celular , Inibidores da Colinesterase/síntese química , Humanos , Ligantes , Masculino , Camundongos , Modelos Animais , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoaminoxidase/metabolismo , Receptores Histamínicos H3/química , Relação Estrutura-Atividade
6.
J Enzyme Inhib Med Chem ; 35(1): 1944-1952, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33092411

RESUMO

Effective therapy of Alzheimer's disease (AD) requires treatment with a combination of drugs that modulate various pathomechanisms contributing to the disease. In our research, we have focused on the development of multi-target-directed ligands - 5-HT6 receptor antagonists and cholinesterase inhibitors - with disease-modifying properties. We have performed extended in vitro (FRET assay) and in cellulo (Escherichia coli model of protein aggregation) studies on their ß-secretase, tau, and amyloid ß aggregation inhibitory activity. Within these multifunctional ligands, we have identified compound 17 with inhibitory potency against tau and amyloid ß aggregation in in cellulo assay of 59% and 56% at 10 µM, respectively, hBACE IC50=4 µM, h5TH6 K i=94 nM, hAChE IC50=26 nM, and eqBuChE IC50=5 nM. This study led to the development of multifunctional ligands with a broad range of biological activities crucial not only for the symptomatic but also for the disease-modifying treatment of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase/química , Colinesterases/metabolismo , Receptores de Serotonina/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/prevenção & controle , Inibidores da Colinesterase/metabolismo , Desenho de Fármacos , Escherichia coli , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Modelos Moleculares , Agregados Proteicos , Relação Estrutura-Atividade
7.
Molecules ; 25(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503288

RESUMO

The inverse correlation observed between Alzheimer's disease (AD) and cancer has prompted us to look for cholinesterase-inhibiting activity in phenothiazine derivatives that possess anticancer properties. With the use of in silico and in vitro screening methods, our study found a new biological activity in anticancer polycyclic, tricyclic, and tetracyclic compounds. The virtual screening of a library of 120 ligands, which are the derivatives of azaphenothiazine, led to the identification of 25 compounds that can act as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Biological assays revealed the presence of selective inhibitors of eeAChE (electric eel AChE) or eqBuChE (equine serum BuChE) and nonselective inhibitors of both enzymes among the tested compounds. Their potencies against eeAChE were in a submicromolar-to-micromolar range with IC50 values from 0.78 to 19.32 µM, while their IC50 values against eqBuChE ranged from 0.46 to 10.38 µM. The most potent among the compounds tested was the tetracyclic derivative, 6-(4-diethylaminobut-2-ynyl)-9-methylthioquinobenzothiazine 24, which was capable of inhibiting both enzymes. 9-Fluoro-6-(1-piperidylethyl)quinobenzothiazine 23 was found to act as a selective inhibitor of eqBuChE with an IC50 value of 0.46 µM. Compounds with such a dual antitumor and cholinesterase-inhibitory activity can be considered as a valuable combination for the treatment of both cancer and AD prevention. The results presented in this study might open new directions of research on the group of tricyclic phenothiazine derivatives.


Assuntos
Antineoplásicos/farmacologia , Derivados de Benzeno/química , Inibidores da Colinesterase/farmacologia , Neoplasias/tratamento farmacológico , Piridinas/química , Tiazinas/química , Acetilcolinesterase/química , Animais , Butirilcolinesterase/química , Proliferação de Células , Electrophorus , Cavalos , Humanos , Neoplasias/patologia , Células Tumorais Cultivadas
8.
Bioorg Chem ; 90: 103084, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31271942

RESUMO

In the search for new treatments for complex disorders such as Alzheimer's disease the Multi-Target-Directed Ligands represent a very promising approach. The aim of the present study was to identify multifunctional compounds among several series of non-imidazole histamine H3 receptor ligands, derivatives of 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine, 1-[2-thiazol-4-yl-(2-aminoethyl)]-4-n-propylpiperazine and 1-phenoxyalkyl-4-(amino)alkylopiperazine using in vitro and in vivo pharmacological evaluation and computational studies. Performed in vitro assays showed moderate potency of tested compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Molecular modeling studies have revealed possible interactions between the active compounds and both AChE and BuChE as well as the human H3 histamine receptor. Computational studies showed the high drug-likeness of selected compounds with very good physicochemical profiles. The parallel artificial membrane permeation assay proved outstanding blood-brain barrier penetration in test conditions. The most promising compound, A12, chemically methyl(4-phenylbutyl){2-[2-(4-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethyl}amine, possesses good balanced multifunctional profile with potency toward studied targets - H3 antagonist activity (pA2 = 8.27), inhibitory activity against both AChE (IC50 = 13.96 µM), and BuChE (IC50 = 14.62 µM). The in vivo pharmacological studies revealed the anti-amnestic properties of compound A12 in the passive avoidance test on mice.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amnésia/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Piperazinas/química , Receptores Histamínicos H3/metabolismo , Acetilcolinesterase/química , Adjuvantes Anestésicos/toxicidade , Amnésia/induzido quimicamente , Animais , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Biologia Computacional , Técnicas In Vitro , Ligantes , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Receptores Histamínicos H3/química , Escopolamina/toxicidade , Relação Estrutura-Atividade
9.
Bioorg Chem ; 78: 29-38, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29529519

RESUMO

Selective butyrylcholinesterase inhibitors could be the promising drug candidates, used in treatment of Alzheimer's disease. The study describes the synthesis and biological activity of novel carbamate derivatives with N-phenylpiperazine, N-benzylpiperazine and 4-benzylpiperidine moieties. Biological studies revealed that most of these compounds displayed significant activity against BuChE. Compound 16 (3-(4-phenyl-piperazin-1-ylmethyl)-phenyl phenylcarbamate) turned out to be the most active (IC50 = 2.00 µM for BuChE). For all synthesized compounds lipophilicity and other physicochemical properties were calculated using computer programs. Relationship between these properties and activity was also checked. Binding mode with enzyme and the ensuing differences in activity were explained by the molecular modeling studies.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Carbamatos/farmacologia , Inibidores da Colinesterase/farmacologia , Animais , Carbamatos/síntese química , Carbamatos/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Cavalos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
10.
Molecules ; 23(2)2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29414887

RESUMO

The complex nature of Alzheimer's disease calls for multidirectional treatment. Consequently, the search for multi-target-directed ligands may lead to potential drug candidates. The aim of the present study is to seek multifunctional compounds with expected activity against disease-modifying and symptomatic targets. A series of 15 drug-like various substituted derivatives of 2-(benzylamino-2-hydroxyalkyl)isoindoline-1,3-diones was designed by modification of cholinesterase inhibitors toward ß-secretase inhibition. All target compounds have been synthesized and tested against eel acetylcholinesterase (eeAChE), equine serum butyrylcholinesterase (eqBuChE), human ß-secretase (hBACE-1), and ß-amyloid (Aß-aggregation). The most promising compound, 12 (2-(5-(benzylamino)-4-hydroxypentyl)isoindoline-1,3-dione), displayed inhibitory potency against eeAChE (IC50 = 3.33 µM), hBACE-1 (43.7% at 50 µM), and Aß-aggregation (24.9% at 10 µM). Molecular modeling studies have revealed possible interaction of compound 12 with the active sites of both enzymes-acetylcholinesterase and ß-secretase. IN CONCLUSION: modifications of acetylcholinesterase inhibitors led to the discovery of a multipotent anti-Alzheimer's agent, with moderate and balanced potency, capable of inhibiting acetylcholinesterase, a symptomatic target, and disease-modifying targets: ß-secretase and Aß-aggregation.


Assuntos
Desenho de Fármacos , Isoindóis/química , Isoindóis/farmacologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/química , Butirilcolinesterase/química , Técnicas de Química Sintética , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Relação Dose-Resposta a Droga , Ligação de Hidrogênio , Concentração Inibidora 50 , Isoindóis/síntese química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade
11.
Electrophoresis ; 38(9-10): 1268-1275, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28169440

RESUMO

Lipophilicity as one of the most important physicochemical properties of the biologically active compounds is closely related to their pharmacokinetic parameters and therefore, it is taken into account at the design stage of new drugs. Among the novel, fast, and reliable methods for determination of the lipophilicity of compounds micellar electrokinetic chromatography (MEKC) is considered to be an appropriate one for bioactive molecules, as it closely mimics the physiological conditions. In this paper MEKC was used for the estimation of log P values for 49 derivatives of phthalimide, tetrahydroisochinoline and indole, designed and synthesized as potential anti-Alzheimer's agents with cholinesterase inhibitory activity. RP-TLC method was applied for determination of another lipophilicity descriptor - RM0 . The results of both experimental methods were compared with each other giving satisfactory correlation (R = 0.784), and with computational methods (Marvin, ChemOffice Software) resulting in weaker correlation (R = 0.466-0.687). The lipophilicity-activity relationship was finally established, showing significant influence of lipophilicity on cholinesterase inhibition in some subgroups of phthalimide derivatives.


Assuntos
Inibidores da Colinesterase/análise , Inibidores da Colinesterase/química , Cromatografia Capilar Eletrocinética Micelar/métodos , Cromatografia em Camada Fina/métodos , Doença de Alzheimer , Cromatografia de Fase Reversa/métodos , Descoberta de Drogas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indóis/análise , Indóis/química , Lipídeos , Ftalimidas/análise , Ftalimidas/química , Tetra-Hidroisoquinolinas/análise , Tetra-Hidroisoquinolinas/química
12.
Bioorg Chem ; 72: 315-322, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28501648

RESUMO

A novel series of 9-amino-1,2,3,4-tetrahydroacridine derivatives with 2-fluorobenzoic acid or 3-fluorobenzoic acid moiety were designed, synthesized and evaluated as inhibitors of cholinesterases and aggregation of ß-amyloid. In the study target compounds were very potent inhibitors of AChE and BChE. The most promising agents had higher inhibitory potency than the reference drugs which was tacrine. Ultimately, the kinetic assay shows the most active target compound 3c against AChE. Almost all of them were more potent against BChE than AChE. Compound 3c in various concentrations was tested by aggregation experiment. Inhibition of ß-amyloid aggregation was 77.32% and 80.43% at 50µM and 100µM, respectively. Therefore, compound 3c is a promising agent for the treatment of AD.


Assuntos
Acridinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Benzoatos/farmacologia , Inibidores da Colinesterase/farmacologia , Acridinas/síntese química , Acridinas/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Benzoatos/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Colinesterases/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
13.
Bioorg Med Chem Lett ; 26(16): 4140-5, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27445168

RESUMO

In recent years, multitarget-directed ligands have become an interesting strategy in a search for a new treatment of Alzheimer's disease. Combination of both: a histamine H3 receptor antagonist/inverse agonist and a cholinesterases inhibitor in one molecule could provide a new therapeutic opportunity. Here, we present biological evaluation of histamine H3 receptor ligands-chlorophenoxyalkylamine derivatives against cholinesterases: acetyl- and butyrylcholinesterase. The target compounds showed cholinesterase inhibitory activity in a low micromolar range. The most potent in this group was 1-(7-(4-chlorophenoxy)heptyl)homopiperidine (18) inhibiting the both enzymes (EeAChE IC50=1.93µM and EqBuChE IC50=1.64µM). Molecular modeling studies were performed to explain the binding mode of 18 with histamine H3 receptor as well as with cholinesterases.


Assuntos
Acetilcolinesterase/metabolismo , Aminas/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Piperidinas/química , Receptores Histamínicos H3/metabolismo , Acetilcolinesterase/química , Sítios de Ligação , Butirilcolinesterase/química , Domínio Catalítico , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Piperidinas/síntese química , Receptores Histamínicos H3/química , Relação Estrutura-Atividade
14.
Molecules ; 21(4): 410, 2016 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-27023510

RESUMO

Cholinesterases and amyloid beta are one of the major biological targets in the search for a new and efficacious treatment of Alzheimer's disease. The study describes synthesis and pharmacological evaluation of new compounds designed as dual binding site acetylcholinesterase inhibitors. Among the synthesized compounds, two deserve special attention--compounds 42 and 13. The former is a saccharin derivative and the most potent and selective acetylcholinesterase inhibitor (EeAChE IC50 = 70 nM). Isoindoline-1,3-dione derivative 13 displays balanced inhibitory potency against acetyl- and butyrylcholinesterase (BuChE) (EeAChE IC50 = 0.76 µM, EqBuChE IC50 = 0.618 µM), and it inhibits amyloid beta aggregation (35.8% at 10 µM). Kinetic studies show that the developed compounds act as mixed or non-competitive acetylcholinesterase inhibitors. According to molecular modelling studies, they are able to interact with both catalytic and peripheral active sites of the acetylcholinesterase. Their ability to cross the blood-brain barrier (BBB) was confirmed in vitro in the parallel artificial membrane permeability BBB assay. These compounds can be used as a solid starting point for further development of novel multifunctional ligands as potential anti-Alzheimer's agents.


Assuntos
Acetilcolinesterase/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/uso terapêutico , Inibidores da Colinesterase/uso terapêutico , Agregação Patológica de Proteínas/tratamento farmacológico , Acetilcolinesterase/química , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/síntese química , Peptídeos beta-Amiloides/química , Sítios de Ligação , Barreira Hematoencefálica/efeitos dos fármacos , Butirilcolinesterase/química , Butirilcolinesterase/uso terapêutico , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Humanos , Isoindóis/síntese química , Isoindóis/química , Isoindóis/uso terapêutico , Ligantes , Modelos Moleculares , Agregação Patológica de Proteínas/metabolismo , Relação Estrutura-Atividade
15.
Molecules ; 21(5)2016 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-27187348

RESUMO

We report herein the straightforward two-step synthesis and biological assessment of novel racemic benzochromenopyrimidinones as non-hepatotoxic, acetylcholinesterase inhibitors with antioxidative properties. Among them, compound 3Bb displayed a mixed-type inhibition of human acetylcholinesterase (IC50 = 1.28 ± 0.03 µM), good antioxidant activity, and also proved to be non-hepatotoxic on human HepG2 cell line.


Assuntos
Doença de Alzheimer/prevenção & controle , Antioxidantes/síntese química , Antioxidantes/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Humanos , Concentração Inibidora 50 , Fígado/efeitos dos fármacos , Análise Espectral
16.
Bioorg Med Chem ; 23(7): 1629-37, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25707322

RESUMO

Alzheimer's disease is a fatal neurodegenerative disorder with a complex etiology. Because the available therapy brings limited benefits, the effective treatment for Alzheimer's disease remains the unmet challenge. Our aim was to develop a new series of donepezil-based compounds endowed with inhibitory properties against cholinesterases and ß-amyloid aggregation. We designed the target compounds as dual binding site acetylcholinesterase inhibitors with N-benzylamine moiety interacting with the catalytic site of the enzyme and an isoindoline-1,3-dione fragment interacting with the peripheral anionic site of the enzyme. The results of pharmacological evaluation lead us to identify a compound 3b as the most potent and selective human acetylcholinesterase inhibitor (hAChE IC50=0.361µM). Kinetic studies revealed that 3b inhibited acetylcholinesterase in non-competitive mode. The result of the parallel artificial membrane permeability assay for the blood-brain barrier indicated that the compound 3b would be able to cross the blood-brain barrier and reach its biological targets in the central nervous system. The selected compound 3b represents a potential lead structure for further development of anti-Alzheimer's agents.


Assuntos
Doença de Alzheimer/enzimologia , Inibidores da Colinesterase/síntese química , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Indóis/síntese química , Doença de Alzheimer/tratamento farmacológico , Animais , Inibidores da Colinesterase/administração & dosagem , Colinesterases/química , Colinesterases/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Cavalos , Humanos , Indóis/administração & dosagem , Estrutura Secundária de Proteína
17.
Bioorg Med Chem ; 23(10): 2445-57, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25868744

RESUMO

Due to the complex nature of Alzheimer's disease, multi-target-directed ligand approaches are one of the most promising strategies in the search for effective treatments. Acetylcholinesterase, butyrylcholinesterase and ß-amyloid are the predominant biological targets in the search for new anti-Alzheimer's agents. Our aim was to combine both anticholinesterase and ß-amyloid anti-aggregation activities in one molecule, and to determine the therapeutic potential in vivo. We designed and synthesized 28 new compounds as derivatives of donepezil that contain the N-benzylpiperidine moiety combined with the phthalimide or indole moieties. Most of these test compounds showed micromolar activities against cholinesterases and aggregation of ß-amyloid, combined with positive results in blood-brain barrier permeability assays. The most promising compound 23 (2-(8-(1-(3-chlorobenzyl)piperidin-4-ylamino)octyl)isoindoline-1,3-dione) is an inhibitor of butyrylcholinesterase (IC50=0.72 µM) that has ß-amyloid anti-aggregation activity (72.5% inhibition at 10 µM) and can cross the blood-brain barrier. Moreover, in an animal model of memory impairment induced by scopolamine, the activity of 23 was comparable to that of donepezil. The selected compound 23 is an excellent lead structure in the further search for new anti-Alzheimer's agents.


Assuntos
Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Amnésia/tratamento farmacológico , Butirilcolinesterase/química , Inibidores da Colinesterase/síntese química , Fármacos Neuroprotetores/síntese química , Piperidinas/síntese química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amnésia/induzido quimicamente , Amnésia/metabolismo , Amnésia/patologia , Peptídeos beta-Amiloides , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Donepezila , Humanos , Indanos/farmacologia , Indóis/química , Masculino , Memória/efeitos dos fármacos , Camundongos , Modelos Moleculares , Fármacos Neuroprotetores/farmacologia , Ftalimidas/química , Piperidinas/farmacologia , Agregados Proteicos/efeitos dos fármacos , Escopolamina , Relação Estrutura-Atividade
18.
Bioorg Med Chem ; 23(17): 5610-8, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26242241

RESUMO

A novel series of 9-amino-1,2,3,4-tetrahydroacridine derivatives with 4-dimethylaminobenzoic acid moiety was synthesized and tested towards inhibition of cholinesterases and amyloid ß aggregation. Target compounds were designed as dual binding site cholinesterase inhibitors able to bind to both the catalytic and the peripheral site of the enzyme and therefore potentially endowed with other properties. The obtained derivatives were very potent inhibitors of both cholinesterases (EeAChE, EqBChE) with IC50 values ranging from sub-nanomolar to nanomolar range, and the inhibitory potency of the most promising agents was higher than that of the reference drugs (rivastigmine and tacrine). The kinetic studies of the most active compound 3a revealed competitive type of AChE inhibition. Moreover, all target compounds were more potent inhibitors of human AChE than tacrine with the most active compound 3b (IC50 = 19 nM). Compound 3a was also tested and displayed inhibitory potency against AChE-induced Aß 1-42 aggregation (80.6% and 91.3% at 50 µM and 100 µM screening concentration, respectively). Moreover, cytotoxicity assay performed on A549 cells did not indicate toxicity of this agent. Compound 3a is a promising candidate for further development of novel multi-functional agents in the therapy of AD.


Assuntos
Acridinas/síntese química , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Acridinas/química , Inibidores da Colinesterase/química , Desenho de Fármacos , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
19.
Bioorg Med Chem ; 23(9): 2104-11, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25813897

RESUMO

This study focused on a series of pyrrolidin-2-one derivatives connected via two or four methylene units to arylpiperazine fragment. The compounds obtained for α1- and α2-adrenoceptors were assessed. The compound with highest affinity for the α1-adrenoceptors was 1-{4-[4-(2-chloro-phenyl)-piperazin-1-yl]-butyl}-pyrrolidin-2-one (10 h) with pKi=7.30. Compound with pKi (α1) ⩾6.44 were evaluated in functional bioassays for intrinsic activity at α1A- and α1B-adrenoceptors. All compounds tested were antagonists of the α1B-adrenoceptors. Additionally, compounds 10e and 10h were α1A-adrenoceptors antagonist. The dual α1A-/α1B-adrenoceptors antagonists, compounds 10e and 10h were also tested in vivo for their hypotensive activity in rats. These compounds, when dosed of 1.0 mg/kg iv in normotensive, anesthetized rats, significantly decreased systolic and diastolic pressure and their hypotensive effects lasted for longer than one hour.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/química , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Hipotensão/induzido quimicamente , Piperazinas/farmacologia , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/síntese química , Animais , Relação Dose-Resposta a Droga , Masculino , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
20.
J Enzyme Inhib Med Chem ; 30(1): 98-106, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24666296

RESUMO

The study presents the discovery of novel butyrylcholinesterase (BuChE) inhibitors among derivatives of azaphenothiazines by application of in silico and in vitro screening methods. From an in-house library of compounds, 143 heterocyclic molecules derived from the azaphenothiazine scaffold were chosen for virtual screening. Based on results of the docking procedure, 15 compounds were identified as exhibiting the best fit for the two screening complexes (ligand - AChE and ligand - BuChE). Five compounds displayed moderate AChE and good BuChE inhibitory activity at screening concentrations of 10 µM. The IC50 values for active BuChE inhibitors were in the 11.8-122.2 nM range. Three of the most active inhibitors are tetra- or pentacyclic derivatives of azaphenothiazines with the same N-methyl-2-piperidinethyl substituent.


Assuntos
Acetilcolinesterase/química , Compostos Aza/química , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Fenotiazinas/química , Acetilcolinesterase/isolamento & purificação , Animais , Compostos Aza/síntese química , Butirilcolinesterase/isolamento & purificação , Inibidores da Colinesterase/síntese química , Descoberta de Drogas , Electrophorus , Ensaios Enzimáticos , Ensaios de Triagem em Larga Escala , Cavalos , Cinética , Simulação de Acoplamento Molecular , Fenotiazinas/síntese química , Piperidinas/química , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA