Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 382(2266): 20230089, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38104615

RESUMO

In the search for clues to the matter-antimatter puzzle, experiments with atoms or molecules play a particular role. These systems allow measurements with very high precision, as demonstrated by the unprecedented limits down to [Formula: see text] e cm on electron EDM using molecular ions, and relative measurements at the level of [Formula: see text] in spectroscopy of antihydrogen atoms. Building on these impressive measurements, new experimental directions offer potential for drastic improvements. We review here some of the new perspectives in those fields and their associated prospects for new physics searches. This article is part of the theme issue 'The particle-gravity frontier'.

2.
Phys Rev Lett ; 131(22): 222502, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101341

RESUMO

Collinear laser spectroscopy was performed on the isomer of the aluminium isotope ^{26m}Al. The measured isotope shift to ^{27}Al in the 3s^{2}3p ^{2}P_{3/2}^{○}→3s^{2}4s ^{2}S_{1/2} atomic transition enabled the first experimental determination of the nuclear charge radius of ^{26m}Al, resulting in R_{c}=3.130(15) fm. This differs by 4.5 standard deviations from the extrapolated value used to calculate the isospin-symmetry breaking corrections in the superallowed ß decay of ^{26m}Al. Its corrected Ft value, important for the estimation of V_{ud} in the Cabibbo-Kobayashi-Maskawa matrix, is thus shifted by 1 standard deviation to 3071.4(1.0) s.

3.
Phys Rev Lett ; 128(2): 022502, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089728

RESUMO

Collinear laser spectroscopy is performed on the nickel isotopes ^{58-68,70}Ni, using a time-resolved photon counting system. From the measured isotope shifts, nuclear charge radii R_{c} are extracted and compared to theoretical results. Three ab initio approaches all employ, among others, the chiral interaction NNLO_{sat}, which allows an assessment of their accuracy. We find agreement with experiment in differential radii δ⟨r_{c}^{2}⟩ for all employed ab initio methods and interactions, while the absolute radii are consistent with data only for NNLO_{sat}. Within nuclear density functional theory, the Skyrme functional SV-min matches experiment more closely than the Fayans functional Fy(Δr,HFB).

4.
Phys Rev Lett ; 124(13): 132502, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302185

RESUMO

We present the first laser spectroscopic measurement of the neutron-rich nucleus ^{68}Ni at the N=40 subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability α_{D} has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus ^{48}Ca. Three-particle-three-hole correlations in coupled-cluster theory substantially improve the description of the experimental data, which allows to constrain the neutron radius and neutron skin of ^{68}Ni.

5.
Phys Rev Lett ; 122(19): 192502, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144969

RESUMO

The change in mean-square nuclear charge radii δ⟨r^{2}⟩ along the even-A tin isotopic chain ^{108-134}Sn has been investigated by means of collinear laser spectroscopy at ISOLDE/CERN using the atomic transitions 5p^{2} ^{1}S_{0}→5p6 s^{1}P_{1} and 5p^{2} ^{3}P_{0}→5p6s ^{3}P_{1}. With the determination of the charge radius of ^{134}Sn and corrected values for some of the neutron-rich isotopes, the evolution of the charge radii across the N=82 shell closure is established. A clear kink at the doubly magic ^{132}Sn is revealed, similar to what has been observed at N=82 in other isotopic chains with larger proton numbers, and at the N=126 shell closure in doubly magic ^{208}Pb. While most standard nuclear density functional calculations struggle with a consistent explanation of these discontinuities, we demonstrate that a recently developed Fayans energy density functional provides a coherent description of the kinks at both doubly magic nuclei, ^{132}Sn and ^{208}Pb, without sacrificing the overall performance. A multiple correlation analysis leads to the conclusion that both kinks are related to pairing and surface effects.

7.
Phys Rev Lett ; 116(18): 182502, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27203317

RESUMO

Collinear laser spectroscopy is performed on the _{30}^{79}Zn_{49} isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life is confirmed, and the nuclear spins and moments of the ground and isomeric states in ^{79}Zn as well as the isomer shift are measured. From the observed hyperfine structures, spins I=9/2 and I=1/2 are firmly assigned to the ground and isomeric states. The magnetic moment µ (^{79}Zn)=-1.1866(10)µ_{N}, confirms the spin-parity 9/2^{+} with a νg_{9/2}^{-1} shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment µ (^{79m}Zn)=-1.0180(12)µ_{N} supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state, δ⟨r_{c}^{2}⟩^{79,79m}=+0.204(6) fm^{2}, providing first evidence of shape coexistence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA