Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Total Environ ; 393(2-3): 309-25, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18258281

RESUMO

Pacific oysters (Crassostrea gigas) collected on the coast of British Columbia, Canada have occasionally shown cadmium (Cd) concentrations at or above 2 microg g(-1) (wet weight), which has resulted in the loss of some international markets. This study investigated the source and transfer of Cd to oysters by focusing on the role of dissolved and particulate Cd in seawater. Parameters monitored for 1 year at two oyster farm sites on Vancouver Island included: oyster tissue mass and shell length, Cd in oysters, dissolved Cd, particulate Cd, temperature and salinity. Results show that dissolved Cd was the main source of Cd to the oysters and that Cd was mainly concentrated in the gut tissues. A seasonal trend was observed in Cd in oysters, in which levels were lowest during periods of higher temperatures. Results also indicate that the local oceanographic inputs and sediment diagenesis directly affect dissolved Cd and thereby influence the Cd levels in oysters. Particulate matter was not found to be a source of Cd in oysters, and was actually negatively correlated. This was likely due to the uptake of dissolved Cd by phytoplankton and the effect of phytoplankton on oyster tissue mass.


Assuntos
Cádmio/metabolismo , Crassostrea/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Colúmbia Britânica , Cádmio/análise , Crassostrea/crescimento & desenvolvimento , Monitoramento Ambiental , Sedimentos Geológicos/análise , Fósforo/análise , Salinidade , Estações do Ano , Temperatura , Titânio/análise , Poluentes Químicos da Água/análise
2.
Polar Biol ; 41(3): 399-413, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31983801

RESUMO

The Arctic Ocean is a region particularly prone to ongoing ocean acidification (OA) and climate-driven changes. The influence of these changes on Arctic phytoplankton assemblages, however, remains poorly understood. In order to understand how OA and enhanced irradiances (e.g., resulting from sea-ice retreat) will alter the species composition, primary production, and eco-physiology of Arctic phytoplankton, we conducted an incubation experiment with an assemblage from Baffin Bay (71°N, 68°W) under different carbonate chemistry and irradiance regimes. Seawater was collected from just below the deep Chl a maximum, and the resident phytoplankton were exposed to 380 and 1000 µatm pCO2 at both 15 and 35% incident irradiance. On-deck incubations, in which temperatures were 6 °C above in situ conditions, were monitored for phytoplankton growth, biomass stoichiometry, net primary production, photo-physiology, and taxonomic composition. During the 8-day experiment, taxonomic diversity decreased and the diatom Chaetoceros socialis became increasingly dominant irrespective of light or CO2 levels. We found no statistically significant effects from either higher CO2 or light on physiological properties of phytoplankton during the experiment. We did, however, observe an initial 2-day stress response in all treatments, and slight photo-physiological responses to higher CO2 and light during the first five days of the incubation. Our results thus indicate high resistance of Arctic phytoplankton to OA and enhanced irradiance levels, challenging the commonly predicted stimulatory effects of enhanced CO2 and light availability for primary production.

8.
Nature ; 407(6805): 727-30, 2000 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-11048715

RESUMO

The growth of populations is known to be influenced by dispersal, which has often been described as purely diffusive. In the open ocean, however, the tendrils and filaments of phytoplankton populations provide evidence for dispersal by stirring. Despite the apparent importance of horizontal stirring for plankton ecology, this process remains poorly characterized. Here we investigate the development of a discrete phytoplankton bloom, which was initiated by the iron fertilization of a patch of water (7 km in diameter) in the Southern Ocean. Satellite images show a striking, 150-km-long bloom near the experimental site, six weeks after the initial fertilization. We argue that the ribbon-like bloom was produced from the fertilized patch through stirring, growth and diffusion, and we derive an estimate of the stirring rate. In this case, stirring acts as an important control on bloom development, mixing phytoplankton and iron out of the patch, but also entraining silicate. This may have prevented the onset of silicate limitation, and so allowed the bloom to continue for as long as there was sufficient iron. Stirring in the ocean is likely to be variable, so blooms that are initially similar may develop very differently.


Assuntos
Eutrofização , Fertilizantes , Ferro/metabolismo , Fitoplâncton/metabolismo , Fenômenos Biomecânicos , Oceanos e Mares , Silicatos
9.
Nature ; 407(6805): 695-702, 2000 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-11048709

RESUMO

Changes in iron supply to oceanic plankton are thought to have a significant effect on concentrations of atmospheric carbon dioxide by altering rates of carbon sequestration, a theory known as the 'iron hypothesis'. For this reason, it is important to understand the response of pelagic biota to increased iron supply. Here we report the results of a mesoscale iron fertilization experiment in the polar Southern Ocean, where the potential to sequester iron-elevated algal carbon is probably greatest. Increased iron supply led to elevated phytoplankton biomass and rates of photosynthesis in surface waters, causing a large drawdown of carbon dioxide and macronutrients, and elevated dimethyl sulphide levels after 13 days. This drawdown was mostly due to the proliferation of diatom stocks. But downward export of biogenic carbon was not increased. Moreover, satellite observations of this massive bloom 30 days later, suggest that a sufficient proportion of the added iron was retained in surface waters. Our findings demonstrate that iron supply controls phytoplankton growth and community composition during summer in these polar Southern Ocean waters, but the fate of algal carbon remains unknown and depends on the interplay between the processes controlling export, remineralisation and timescales of water mass subduction.


Assuntos
Ferro , Fitoplâncton , Atmosfera , Dióxido de Carbono/metabolismo , Eutrofização , Fertilizantes , Previsões , Ferro/metabolismo , Luz , Modelos Biológicos , Oceanos e Mares , Fitoplâncton/metabolismo , Água do Mar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA