Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830085

RESUMO

Pea plants are sensitive to water shortages, making them less attractive to farmers. Hoping to reduce the adverse effects of drought on peas and considering the benefits of boron, this study aimed to investigate the impact of boron nanoparticles on the antioxidant system and oxidative stress biomarkers in drought-stressed peas. Experiments were performed in a greenhouse. Pea plants were treated with a suspension of B2O3 nanoparticles at 12.5, 25, and 50 ppm concentrations before ten days of water shortage. Drought effects were induced by maintaining 30% substrate moisture. This study investigated the properties of the nanoparticle suspension and different application methods for spraying and watering pea plants. The effects of B2O3 nanoparticles and drought were determined on pea growth indicators, oxidative stress biomarkers, and enzymatic and non-enzymatic antioxidants. Spraying with B2O3 nanoparticles at 12.5 ppm most effectively stimulated phenol accumulation; FRAP, DPPH, and ABTS antioxidant capacity; and APX, SOD, GPX, and CAT enzyme activity in pea leaves exposed to drought. In addition, B2O3 nanoparticles reduced the amount of MDA and H2O2 in pea plants grown on a substrate with insufficient moisture. The most substantial positive effect was found on peas affected by drought after spraying them with 12.5 ppm of B2O3 nanoparticles. B2O3 nanoparticles positively affected the pea height, leaf area, number of nodules, and yield.

2.
Sci Total Environ ; 751: 142335, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33181979

RESUMO

Forest soils are being exposed to nutrient deficiency and acidification at increasing rates as a result of intensive management. Mineral fertilization, however, provides a way to improve soil nutrient balance. The aim of this study is to present the effects of mineral fertilization on the properties of forest soil 11 years after fertilization. Our research investigated the effects of dolomite, magnesite and serpentinite fertilization on the physicochemical properties of the soil, soil biological activity, and fungal diversity. We also determined the condition of a new generation of fir trees after mineral fertilization. In autumn, 2008, fertilizers (dolomite, magnesite and serpentinite, specifically) in the amount of 4000 kg.ha-1 were added to plots in the Wisla Forest District in Poland; one area was left unfertilized to act as the control area for this research. Our results reveal that all fertilization improved the selected soil's physicochemical properties (pH, Ca and Mg content) and accordingly, its biochemical activity; in particular, we found that dolomite (4000 kg.ha-1) contributed heavily to soil improvement. The findings also showed that soil pH and calcium content were strongly dependent on enzymatic activity, while dolomite fertilization resulted in a significant increase in biomass size in the fir trees included in this study. In addition to being associated with the highest plant biomass and amounts of enzymatic activity, dolomite-fertilized soil also had the highest number of fungal operational taxonomic units (OTUs): 403, compared to 322 OTUs in the control soil. Finally, the fungal communities in the control soil varied significantly from the fungal communities in soils fertilized with dolomite and serpentinite. The results of this research support mineral fertilization, and in particular, fertilization using dolomite in amounts of 4000 kg.ha-1, to improve soil nutrient supply and to shape the biological activity expressed by the enzymatic activity of forest soils.


Assuntos
Ecossistema , Solo , Florestas , Polônia , Microbiologia do Solo , Árvores
3.
Plants (Basel) ; 10(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921895

RESUMO

The consumption of microgreens has increased due to their having higher levels of bioactive compounds and mineral nutrients than mature plants. The lighting conditions during the cultivation of microgreens, if optimally selected, can have a positive effect by further increasing their nutritional value. Thus, our study aimed to determine the changes in mineral nutrients contents of Brassicaceae microgreens depending on different blue-red (B:R) light ratios in light-emitting diode (LED) lighting and to evaluate their growth and nutritional value according to different indexes. Experiments were performed in controlled environment growth chambers at IH LRCAF, 2020. Microgreens of mustard (Brassica juncea 'Red Lace') and kale (Brassica napus 'Red Russian') were grown hydroponically under different B:R light ratios: 0%B:100%R, 10%B:90%R, 25%B:75%R, 50%B:50%R, 75%B:25%R, and 100%B:0%R. A 220 µmol m-2 s-1 total photon flux density (TPFD), 18 h photoperiod, 21/17 ± 2 °C temperature and 60% ± 5% relative humidity in the growth chamber were maintained during cultivation. We observed that an increasing percentage of blue light in the LED illumination spectrum during growth was associated with reduced elongation in the microgreens of both species and had a positive effect on the accumulation of mostly macro- and micronutrients. However, different B:R light ratios indicate a species-dependent response to changes in growth parameters such as leaf area, fresh and dry mass, and optical leaf indexes such as for chlorophyll, flavonol, anthocyanin, and carotenoid reflectance.

4.
Sensors (Basel) ; 8(6): 4006-4032, 2008 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-27879920

RESUMO

The results of a dew monitoring program performed in Poland with the aim to outline the chemical composition of dew water in meteorological context are presented. Dew samples were collected from eight measurement stations from August 2004 to November 2006. Taking into account the type of land use and characteristics of pollutant emission, sampling sites were divided into the following categories: rural, coastal urban and inland urban stations. Selected anions and cations as well as formaldehyde and sum of phenols were determined. The average TIC (Total Inorganic Ionic Content) values in dew samples ranged from 0.83 to 3.93 between individual stations with 10.9 meq/L as the highest daily value of TIC measured. The average TIC values observed in dew at all stations were at a similar level (2.46 meq/L) when compared with hoarfrost (2.86 meq/L). However, these values were much higher in comparison with other kinds of atmospheric water like precipitation (wet only; 0.37 meq/L) or fog/cloud (1.01 meq/L). The pH values of dew water ranged from 5.22 to 7.35 for urban coastal stations, from 5.67 to 8.02 for urban inland stations and from 4.16 to 8.76 for dew samples collected in the rural area. HCHO was found in 97 % of dew samples, with concentrations ranging from 0.010 to 5.40 meq/L. Excluding stations near the seashore, where the contribution of Na⁺ and Cl- increased, the most important ions were sulphates. A very low contribution of NO3- and noticeable increase of Ca2+ which were not observed in the case of precipitation and fog water, were typical in all stations. The contribution of ammonium ion was two times higher at rural stations as a result of agricultural ammonia emissions. The strongest correlations were noticed between the sum of acidifying anions SO42- + NO3- and Ca2+ ion for all urban and rural stations. A very strong correlation was also observed for Na+ and Cl⁻ ions in urban coastal stations, as a natural consequence of the location of these stations close to the sea. It was proved that thermal stratification, direction of circulation and local breeze circulation control the atmospheric chemistry at ground level, where dew is formed. The highest TIC values at urban stations were associated with anticyclonic weather, while at rural sites with cyclonic weather situations. The chemistry of dew water in urban coastal stations was closely related to local breeze circulation in the warm season, mainly in the form of diurnal breeze causing a significant increase of the concentration of Na⁺ and Cl⁻ions. Thus, dew can be a good indicator of the atmospheric pollution level at a given site. Taking into account both high TIC values and the annual water equivalent estimated at around 50 mm, dew is a considerable factor of wet deposition, responsible for an additional 60 % of pollutant input into the ground when compared with precipitation.

5.
ScientificWorldJournal ; 7 Suppl 1: 181-91, 2007 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-17450296

RESUMO

The chemical composition of throughfall depends on the age of the Norway spruce (Picea abies Karst) stands and season of the year. The pH of throughfall decreased and the amount of hydrogen ion in throughfall deposited to the soil increased with increasing age of spruce stands, especially in the winter season. Concentrations of K+, H+, SO4(2-), Mn2+, and NH4(+) in throughfall were higher than bulk precipitation for the whole year and K+, H+, and Mn2+ concentrations were higher in throughfall in winter and the growing season. This indicates that these ions were washed out or washed from the surface of needles and/or the bark, and that NO3(-), NH4(+), Ca2+, Mg2+, Fe2+, and Zn2+ were absorbed in the canopy. The effect of high nitrogen deposition, above critical loads, and an increase in the amount of sulfur and in the sum of the strong acids (S-SO4(2-) and N-NO3(-)) that reached the soil with throughfall may have implications for the vitality of spruce stands, especially in older age classes. The application of Principal Component Analysis (PCA) has led to identification of five factors responsible for the data structure ("mineral dust", "acidic emissions", "heavy metals-dust particles", "ammonium [NH4(+)]", and "H+"). They explain more than 60% of the total variance system. The strong positive correlation between stand age class and ionic concentrations in throughfall occurs for all year and the winter period for ions within the following categories: "acidic emissions", SO4(2-) + NO3(-); "heavy metals-dust particles", Fe2+ + Mn2+ + Zn2+; "mineral dust", Na+ + K+ + Ca2+ + Mg2+; "NH4(+)"; and "H+". The strength of the relationship decreases in the growing period, probably due to processes occurring in the canopy (adsorption, leaching, etc.).


Assuntos
Poluentes Atmosféricos/análise , Picea/química , Ânions/análise , Cátions/análise , Geografia , Picea/crescimento & desenvolvimento , Polônia , Chuva , Estações do Ano , Solo , Água/química
6.
Sci Total Environ ; 599-600: 1630-1637, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28535591

RESUMO

The purpose of this study was to identify the factors affecting spring water chemistry in different tree stands and to measure the influence of water stage on the physicochemical parameters of spring waters in a small Carpathian catchment. Water samples were collected three times per year at various stages of the water: after the spring thaw, after a period of heavy rain and after a dry period in 2011 and 2012. Water samples were left in the laboratory to reach room temperature (19-20°C) and analyzed for EC (reference T=25°C) and pH. After filtration through 0.45µm PTFE syringe filters, the water samples were analyzed by means of ion chromatography using a DIONEX ICS 5000 unit. The following ions were analyzed: Ca2+, Mg2+, Na+, K+, HCO3-, SO42-, Cl-, and NO3-. Multivariate analysis (PCA) allowed the identification of two factors of spring water chemistry: factor 1, water stage and factor 2 tree stand composition. Seasonal variation of spring water chemistry showed that, higher pH values and mineralization as well as higher concentrations of Ca2+ and Mg2+ were measured during low water stage periods while lower EC and pH values were noted after spring snowmelt and rainfall, when higher concentrations of NO3- and SO42- were also found. Higher concentrations of Ca2+ and Mg2+ and higher pH of spring waters located in beech-fir stands and in those mixed with a large proportion of beech as well as a lower concentration of Ca2+, Mg2+ and HCO3-, pH, conductivity and mineralization of these spring waters, in which the alimentation areas were covered by upper subalpine spruce stands were noted.

7.
Sci Total Environ ; 568: 1044-1053, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27363347

RESUMO

The purpose of the study was to identify the factors affecting stream water chemistry in the small mountain catchments deforested to varying degrees, from 98.7 to 14.1%, due to long-term acid deposition. Water samples were collected monthly in 2013 and 2014 from 17 streams flowing across three distinct elevation zones in the Skrzyczne massif (Poland): Upper, Middle and Lower Forest Zone. Chemical and physical analyses, including the pH, electrical conductivity (EC), total mineral content (Mt), water temperature, and the concentrations of Ca(2+), Mg(2+), Na(+), K(+), HCO3(-), SO4(2-), Cl(-), and NO3(-), were conducted. Based on Principal Component Analysis (PCA), the most important factor affecting water chemistry was human impact associated with changes in pH, SO4(2-) concentration, and the concentration of most of the main ions. The substantial acidity of the studied environment contributed to the exclusion of natural factors, associated with changes in discharge, from the list of major factors revealed by PCA. All of the streams were characterized by very low EC, Mt, and low concentrations of the main ions such as Ca(2+) and HCO3(-). This is the effect of continuous leaching of solutes from the soils by acidic precipitation. The lowest parameter values were measured for the streams situated in the Upper Forest Zone, which is associated with greater acid deposition at the higher elevations. In the streams located in the Upper Forest Zone, a higher percentage of SO4(2-) occurred than in the streams situated in the Middle and Lower Forest Zones. However, the largest share of SO4(2-) was measured in the most deforested catchment. The saturation of the studied deforested catchment with sulfur compounds is reflected by a positive correlation between SO4(2-) and discharge. Hence, a forest acts as a natural buffer that limits the level of acidity in the natural environment caused by acidic atmospheric deposition.

8.
Environ Pollut ; 137(3): 568-73, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16005767

RESUMO

The multi-layer dynamic model SAFE was applied to the forested catchment Istebna (Southern Poland), to study recovery from acidification. Environmental pollution in the area has been historically high. The model uses data from an intensive monitoring plot established in 1999 in a spruce stand, which was planted in 1880. Observations showed that the soil was depleted of base cations. The measured base saturation in 1999 was between 5 and 8% in the different soil layers. Model predictions assuming full implementation of the UNECE 1999 Gothenburg Protocol and present day base cation deposition show that the base saturation will slowly increase to 20% by 2100. Despite large emission reductions, Istebna still suffers from the very high loads of acidifying input during the past decades. Soil recovery depends on future emissions especially on base cation deposition. The recovery will be even slower if the base cation deposition decreases further.


Assuntos
Ecologia/métodos , Poluição Ambiental , Resíduos Industriais , Modelos Teóricos , Poluentes do Solo/análise , Árvores , Chuva Ácida , Cátions , Polônia , Solo/análise , Fatores de Tempo
9.
Water Air Soil Pollut ; 225: 1971, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24966443

RESUMO

In recent years, there has been the phenomena of spruce dieback in Europe. Significant areas of spruce low mortality now cover both sides of the Polish southern border. We evaluated ecochemical parameters influencing the heavy dieback occurring in mature spruce stands in the Polish Carpathian Mountains. Dolomite, magnesite and serpentinite fertilizers were applied to experimental plots located in 100-year-old stands in the autumn of 2008. The experimental plots were located in the mid-elevational forest zone (900-950 m) on two nappes of the flysch Carpathians: Magura (Ujsoly Forest District) and Silesian (Wisla Forest District). The saturation of the studied soils demonstrates moderate resilience of soils in Wisla Forest District in relation to acid load and high flexibility of the Ujsoly soils. After application of the fertilizers, an increase of Mg, Ca and Mb was noted in the soil solution, determined in the overlaying highly acidic organic horizons through the ion-exchange buffering mechanism of highly protonated functional groups with high buffering capacity. Magnesium concentration increased following fertilization, presenting a potential improvement of forest growth capacity without the hazard of adverse side effects of liming. Aluminium stress in old spruce is unlikely, while trees in the control plots in Wisla Forest District may already be sensitive to aluminium stress. Serpentinite fertilization improved the supply of soils in magnesium without causing significant changes in the pH of the soil. Such changes in the pH were found in dolomite and magnesite fertilizer.

10.
Environ Pollut ; 159(5): 1048-57, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21168942

RESUMO

The present study deals with the application of the self-organizing map (SOM) technique in the exploration of spatiotemporal dynamics of spring and stream water samples collected in the Chocholowski Stream Basin located in the Tatra Mountains (Poland). The SOM-based classification helped to uncover relationships between physical and chemical parameters of water samples and factors determining the quality of water in the studied high-mountain area. In the upper part of the Chocholowski Stream Basin, located on the top of the crystalline core of the Tatras, concentrations of the majority of ionic substances were the lowest due to limited leaching. Significantly higher concentration of ionic substances was detected in spring and stream samples draining sedimentary rocks. The influence of karst-type springs on the quality of stream water was also demonstrated.


Assuntos
Água Doce/química , Geografia/métodos , Estações do Ano , Algoritmos , Altitude , Redes Neurais de Computação , Polônia , Fatores de Tempo
11.
Environ Pollut ; 155(3): 517-27, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18358577

RESUMO

The chemical composition of throughfall and canopy leaching, as well as the acid neutralizing capacity and alkalinity depended on the age of Norway spruce (Picea abies Karst) stands and season of the year. A higher amount of sulphur and strong acids was deposited to the soil in the older age classes. Concentrations of SO(4)(2)(-), K(+), H(+), Mn(2+), Fe(2+) and Zn(2+) in throughfall were higher than in bulk precipitation in any season. This suggests that these ions were washed out or washed from the surface of needles and/or barks. The other ions NO(3)(-), NH(4)(+), Ca(2+) and Mg(2+) were retained by the canopy, in particular Ca(2+) and Mg(2+) during the growing season in young stands. Principal component analysis identified five factors responsible for the data structure and suggested the major anthropogenic emission sources were acidic emission (SO(4)(2)(-)+NO(3)(-)), heavy metals-dust particles (Fe(2+)+Mn(2+)+Zn(2+)), ammonium (NH(4)(+)) and H(+), while the natural-origin emission was mineral dust (Na(+)+K(+)+Ca(2+)+Mg(2+)).


Assuntos
Poluentes Atmosféricos/química , Picea , Chuva/química , Estações do Ano , Monitoramento Ambiental/métodos , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Material Particulado , Folhas de Planta/química , Polônia , Poluentes do Solo/análise , Enxofre/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA