Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Arch Microbiol ; 205(4): 109, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36884153

RESUMO

The present study aimed to prepare and characterize vancomycin-loaded mesoporous silica nanoparticles (Van-MSNs) to detect inhibitory effects on the planktonic and biofilm forms of methicillin-resistant Staphylococcus aureus (MRSA) isolates, and study the biocompatibility and toxicity of Van-MSNs in vitro as well as antibacterial activity of Van-MSNs against Gram-negative bacteria. The inhibitory effects of Van-MSNs were investigated on MRSA using the determination of minimum inhibitory (MIC) and minimum biofilm-inhibitory concentrations (MBIC) as well as the effect on bacterial attachment. Biocompatibility was studied by examining the effect of Van-MSNs on the lysis and sedimentation rate of red blood cells (RBC). The interaction of Van-MSNs with human blood plasma was detected by the SDS-PAGE approach. The cytotoxic effect of the Van-MSNs on human bone marrow mesenchymal stem cells (hBM-MSCs) was evaluated by the MTT assay. The antibacterial effects of vancomycin and Van-MSNs on Gram-negative bacteria were also investigated using MIC determination using the broth microdilution method. Furthermore, bacteria outer membrane (OM) permeabilization was determined. Van-MSNs showed inhibitory effects on planktonic and biofilm forms of bacteria on all isolates at levels lower than MICs and MBICs of free vancomycin, but the antibiofilm effect of Van-MSNs was not significant. However, Van-MSNs did not affect bacterial attachment to surfaces. Van-loaded MSNs did not show a considerable effect on the lysis and sedimentation of RBC. A low interaction of Van-MSNs was detected with albumin (66.5 kDa). The hBM-MSCs viability in exposure to different levels of Van-MSNs was 91-100%. MICs of ≥ 128 µg/mL were observed for vancomycin against all Gram-negative bacteria. In contrast, Van-MSNs exhibited modest antibacterial activity inhibiting the tested Gram-negative bacterial strains, at concentrations of ≤ 16 µg/mL. Van-MSNs increased the OM permeability of bacteria that can increase the antimicrobial effect of vancomycin. According to our findings, Van-loaded MSNs have low cytotoxicity, desirable biocompatibility, and antibacterial effects and can be an option for the battle against planktonic MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Humanos , Vancomicina/farmacologia , Dióxido de Silício/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas , Bactérias , Biofilmes
2.
Mol Biol Rep ; 50(1): 203-213, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36319783

RESUMO

BACKGROUND: The studies have shown that rutin has great potential as an anticancer and antimicrobial plant base agent; nevertheless, poor bioavailability and low aqueous solubility of rutin limit its application. One of the beneficial routes to increase the solubility and bioavailability of rutin is the development of nanoparticulate material. This study aimed to assess the anticancer and antibacterial effects of rutin-loaded mesoporous silica nanoparticles (RUT-MSNs). METHODS: RUT-MSNs were prepared and physicochemically characterized. The cytotoxicity of RUT-MSNs on the HN5 cells as head and neck cancer cells was evaluated. The expression level of apoptosis-related genes such as Bcl-2 and Bax genes were evaluated. In addition, ROS production of RUT-MSNs treated cells was assessed. In addition, minimum inhibitory concentration (MIC), biofilm, and attachment inhibitory effects of RUT-MSNs compared with free rutin were assessed against different bacterial strains. RESULTS: Transmission electron microscopy (TEM) showed mesoporous rod-shaped nanoparticles with an average particle size of less than 100 nm. RUT-MSNs displayed the cytotoxic effect with IC50 of 20.23 µM in 48 h of incubation time (p < 0.05). The elevation in the ratio of Bax/Bcl-2 was displayed within the IC50 concentration of RUT-MSNs in 48 h (p < 0.05). The antibacterial action of rutin was improved by loading rutin in MSNs to the nano-sized range in the MIC test. CONCLUSION: The anticancer and antibacterial effects of RUT-MSNs were considerably more than rutin. RUT-MSNs inhibited the growth of HN5 cells by inducing apoptosis and producing ROS. These results suggest that RUT-MSNs may be useful in the treatment of cancers and infections.


Assuntos
Nanopartículas , Rutina , Rutina/farmacologia , Dióxido de Silício , Espécies Reativas de Oxigênio , Proteína X Associada a bcl-2 , Nanopartículas/química , Antibacterianos/farmacologia , Portadores de Fármacos/química
3.
Oral Dis ; 29(7): 2468-2482, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35699367

RESUMO

OBJECTIVE: Herbal therapies are utilized to treat a broad diversity of diseases all over the globe. Although no clinical studies have been conducted to demonstrate the antibacterial, antimicrobial, and antiplaque characteristics of these plants, this does not imply that they are ineffectual as periodontal treatments or anti-cariogenic drugs. However, there is a scarcity of research confirming their efficacy and worth. SUBJECT: Herbs are utilized in dentistry as antimicrobial, antineoplastic, antiseptic, antioxidant, and analgesics agents as well as for the elimination of bad breath. In addition, the application of herbal agents in tissue engineering improved the regeneration of oral and dental tissues. This study reviews the application of medicinal herbs for the treatment of dental and oral diseases in different aspects. METHODS: This article focuses on current developments in the use of medicinal herbs and phytochemicals in oral and dental health. An extensive literature review was conducted via an Internet database, mostly PubMed. The articles included full-text publications written in English without any restrictions on a date. CONCLUSION: Plants have been suggested, as an alternate remedy for oral-dental problems, and this vocation needs long-term dependability. More research on herbal medicine potential as pharmaceutical sources and/or therapies is needed.


Assuntos
Anti-Infecciosos , Plantas Medicinais , Fitoterapia , Antibacterianos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
4.
Phytother Res ; 36(3): 1156-1181, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35129230

RESUMO

Curcumin is a phytochemical achieved from the plant turmeric. It is extensively utilized for the treatment of several types of diseases such as cancers. Nevertheless, its efficiency has been limited because of rapid metabolism, low bioavailability, poor water solubility, and systemic elimination. Scientists have tried to solve these problems by exploring novel drug delivery systems such as lipid-based nanoparticles (NPs) (e.g., solid lipid NPs, nanostructured lipid carriers, and liposomes), polymeric NPs, micelles, nanogels, cyclodextrin, gold, and mesoporous silica NPs. Among these, liposomes have been the most expansively studied. This review mainly focuses on the different curcumin nanoformulations and their use in cancer therapy in vitro, in vivo, and clinical studies. Despite the development of curcumin-containing NPs for the treatment of cancer, potentially serious side effects, including interactions with other drugs, some toxicity aspects of NPs may occur that require more high-quality investigations to firmly establish the clinical efficacy.


Assuntos
Curcumina , Nanopartículas , Neoplasias , Curcumina/farmacologia , Curcumina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Micelas , Nanomedicina , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico
5.
Phytother Res ; 35(5): 2500-2513, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33295678

RESUMO

Because of the extensive biological functions of natural substances such as bioflavonoids, and their high safety and low costs, they could have high priority application in the health care system. The antioxidant properties of rutin, a polyphenolic bioflavonoid, have been well documented and demonstrated a wide range of pharmacological applications in cancer research. Since chemotherapeutic drugs have a wide range of side effects and rutin is a safe anticancer agent with minor side effects so recent investigations are performed for study of mechanisms of its anticancer effect. Both in-vivo and in-vitro examinations on anticancer mechanisms of this natural agent have been widely carried out. Regulation of different cellular signaling pathways such as Wnt/ß-catenin, p53-independent pathway, PI3K/Akt, JAK/STAT, MAPK, p53, apoptosis as well as NF-ĸB signaling pathways helps to mediate the anticancer impacts of this agent. This study tried to review the molecular mechanisms of rutin anticancer effect on various types of cancer. Deep exploration of these anticancer mechanisms can facilitate the development of this beneficial compound for its application in the treatment of different cancers.

6.
Phytother Res ; 35(4): 1719-1738, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33058407

RESUMO

BACKGROUND: Rutin as a natural flavonoid compound has revealed an extensive range of therapeutic potentials. PURPOSE: The current paper is focused on the numerous studies on rutin nanoformulations regarding its broad spectrum of therapeutic potentials. STUDY AND METHODS: A review was conducted in electronic databases (PubMed) to identify relevant published literature in English. No restrictions on publication date were imposed. RESULTS: The literature search provided 7,078 results for rutin. Among them, 25 papers were related to the potential biological activities of rutin nanoformulations. Polymeric nanoparticles were the most studied nanoformulations for rutin (14 titles) and lipid nanoparticles (5 titles) were in second place. The reviewed literature showed that rutin has been used as an antimicrobial, antifungal, and anti-allergic agent. Improving the bioavailability of rutin using novel drug-delivery methods will help the investigators to use its useful effects in the treatment of various chronic human diseases. CONCLUSION: It can be concluded that the preparation of rutin nanomaterials for the various therapeutic objects confirmed the enhanced aqueous solubility as well as enhanced efficacy compared to conventional delivery of rutin. However, more investigations should be conducted to confirm the improved bioavailability of the rutin nanoformulations.


Assuntos
Nanopartículas/uso terapêutico , Rutina/uso terapêutico , Humanos , Rutina/farmacologia
7.
Phytother Res ; 34(8): 1926-1946, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32166813

RESUMO

Curcumin has been used in numerous anti-microbial research because of its low side effects and extensive traditional applications. Despite having a wide range of effects, the intrinsic physicochemical characteristics such as low bioavailability, poor water solubility, photodegradation, chemical instability, short half-life and fast metabolism of curcumin derivatives limit their pharmaceutical importance. To overcome these drawbacks and improve the therapeutic ability of curcuminoids, novel approaches have been attempted recently. Nanoparticulate drug delivery systems can increase the efficiency of curcumin in several diseases, especially infectious diseases. These innovative strategies include polymeric nanoparticles, hydrogels, nanoemulsion, nanocomposite, nanofibers, liposome, nanostructured lipid carriers (NLCs), polymeric micelles, quantum dots, polymeric blend films and nanomaterial-based combination of curcumin with other anti-bacterial agents. Integration of curcumin in these delivery systems has displayed to improve their solubility, bioavailability, transmembrane permeability, prolong plasma half-life, long-term stability, target-specific delivery and upgraded the therapeutic effects. In this review paper, a range of in vitro and in vivo studies have been critically discussed to explore the therapeutic viability and pharmaceutical significance of the nano-formulated delivery systems to elevate the anti-bacterial activities of curcumin and its derivatives.


Assuntos
Anti-Infecciosos/uso terapêutico , Nanopartículas/uso terapêutico , Anti-Infecciosos/farmacologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos
8.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947685

RESUMO

The repair and regeneration of articular cartilage represent important challenges for orthopedic investigators and surgeons worldwide due to its avascular, aneural structure, cellular arrangement, and dense extracellular structure. Although abundant efforts have been paid to provide tissue-engineered grafts, the use of therapeutically cell-based options for repairing cartilage remains unsolved in the clinic. Merging a clinical perspective with recent progress in nanotechnology can be helpful for developing efficient cartilage replacements. Nanomaterials, < 100 nm structural elements, can control different properties of materials by collecting them at nanometric sizes. The integration of nanomaterials holds promise in developing scaffolds that better simulate the extracellular matrix (ECM) environment of cartilage to enhance the interaction of scaffold with the cells and improve the functionality of the engineered-tissue construct. This technology not only can be used for the healing of focal defects but can also be used for extensive osteoarthritic degenerative alterations in the joint. In this review paper, we will emphasize the recent investigations of articular cartilage repair/regeneration via biomaterials. Also, the application of novel technologies and materials is discussed.


Assuntos
Cartilagem Articular , Condrogênese , Nanoestruturas , Regeneração , Engenharia Tecidual , Animais , Humanos , Medicina Regenerativa , Alicerces Teciduais
9.
Phytother Res ; 33(11): 2927-2937, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31452263

RESUMO

Curcumin is a dietary polyphenol and a bioactive phytochemical agent that possesses anti-inflammatory, antioxidant, anticancer, and chemopreventive properties. Some of the predominant activities of stem cells include regeneration of identical cells and the ability to maintain the proliferation and multipotentiality. However, these cells could be stimulated to differentiate into specific cell types. Curcumin protects some stem cells from toxicity and can stimulate proliferation and differentiation of stem cells. In the present review, we summarize the antioxidant, stemness activity, antiaging, and neuroprotective as well as wound healing and regenerative effects of curcumin.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Curcumina/farmacologia , Células-Tronco/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Regeneração/efeitos dos fármacos , Células-Tronco/fisiologia , Cicatrização/efeitos dos fármacos
10.
Pharm Dev Technol ; 24(10): 1187-1199, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31424308

RESUMO

Nanotechnology has attracted increasing interest in different aspects of biotechnology. The fabrication of electrospun nanofibers (NFs) containing antibacterial agents for antimicrobial applications has been significantly enhanced in recent years. In the current review, various electrospun NFs with antimicrobial properties were introduced and evaluated. The main focus was on the recent developments and applications of antimicrobial electrospun NFs incorporated with different antimicrobial agents, including metal nanoparticles (NPs), antibiotics, quaternized ammonium compounds, triclosan, herbal extracts, carbon nanomaterials, and antimicrobial biopolymers with inherent antimicrobial properties. The search results revealed that antimicrobial containing electrospun NFs had enhanced antimicrobial performance with various biomedical applications compared to the traditional antimicrobial materials. According to the reported results, most of the studies were of an investigative nature and were mostly based on in vitro tests. Hence, further examination on in vivo clinical performance of these antimicrobial NFs seems necessary. However, these antimicrobial NFs appear to have the potential to achieve clinical usefulness and commercial production in the near future.


Assuntos
Anti-Infecciosos/administração & dosagem , Biotecnologia/métodos , Portadores de Fármacos/química , Nanofibras/química , Nanotecnologia/métodos , Biotecnologia/tendências , Nanotecnologia/tendências
11.
Toxicol Mech Methods ; 29(5): 368-377, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30642212

RESUMO

OBJECTIVES: A wide range of compounds are utilized in dentistry such as dental composites, resins, and implants. The successful clinical use of dental materials relies on theirm physiochemical properties as well as biological and toxicological reliability. Different local and systemic toxicities of dental materials have been reported. Placement of these materials in oral cavity for a long time period might yield unwanted reactions. An extensive variety of materials is used in dentistry including filling materials, restorative materials, intracanal medicines, prosthetic materials, different types of implants, liners, and irrigants. The increasing rate in development of the novel materials with applications in the dental field has led to an increased consciousness of the biological risks and tempting restrictions of these materials. The biocompatibility of a biomaterial used for the replacement or filling of biological tissue such as teeth always had a high concern within the health care disciplines for patients. MATERIALS AND METHODS: Any material used in humans should be tested before clinical application. There are many tests evaluating biocompatibility of these materials at the point of in vitro, in vivo, and clinical investigations. RESULTS: The current review discusses the potential toxicity of dental material and screening of their biocompatibility. CLINICAL RELEVANCE: It is essential to use healthy and safe materials medical approaches. In dentistry, application of different materials in long-term oral usage demands low or nontoxic agents gains importance for both patients and the staff. Furthermore, screening tests should evaluate any potential toxicity before clinical application.


Assuntos
Materiais Biocompatíveis/toxicidade , Materiais Dentários/toxicidade , Humanos , Teste de Materiais
12.
J Pharm Pharm Sci ; 20(0): 148-160, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28554344

RESUMO

PURPOSE: Nanomaterials are suitable candidates for coating of titanium based (Ti-based) dental implants due to their unique properties. The objective of this article is to summarize the application of nanoparticles as Ti-based implant coating materials in order to control and improve the implant success rate with focus on enhanced osseointegration and antimicrobial purposes. METHOD: This review was conducted using electronic databases and MeSH keywords to detect associated scientific literature published in English. RESULTS: The reviewed articles exhibited that a significant progress in research has occurred in the case of nanomaterial-based coatings for dental implants. Coating of Ti surfaces with nanoparticles can improve soft tissue integration and osteogeneration that leads to improved fixation of implants. Furthermore, osteoconductive nanoparticles induce a chemical bond with bone to attain good biological fixation for implants. Surface modification of implants using antibacterial properties can also decrease the potential for infection, and certainly, present improve clinical outcomes. CONCLUSIONS: Considering the reported success, more clinically and in vivo information on the nanoparticle-based implant coatings will add to the successful application of the device in the clinic. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Implantes Dentários , Materiais Dentários/farmacologia , Nanopartículas Metálicas/química , Osseointegração/efeitos dos fármacos , Titânio/química , Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Materiais Dentários/química , Humanos , Testes de Sensibilidade Microbiana
13.
Cell Biol Int ; 39(8): 881-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25790433

RESUMO

Nowadays successful application of nanoparticles for therapeutic objects needs the effective uptake of them by cells. Hence, studying of the interaction of nanoparticles with cell membrane for effective cellular uptaking seems to be vital and important. Trafficking of lipids, proteins, glucose, and other biomaterials into the cells is possible from two major exocytic and endocytic pathways. The penetration ability of nanoparticles into the cells must be considered in engineering of these particles. Enormous in vivo and in vitro experiments in the field of nanotechnology have confirmed the effect of physiochemistry properties in state of cell-nanoparticles interactions. Thus, the optimization of parameters directly related to physicochemical characteristics through the preparation process seems to be necessary for improving therapeutic effects of nanocarriers. Besides, biological medium and cell division also affect the amount of nanoparticle uptaking into the cells. This study reviews the influence of size, shape, the surface modification of nano particles, medium, and cell division effects on the cellular absorption of drug/gene nanocarriers.


Assuntos
Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Nanopartículas/química , Nanopartículas/metabolismo , Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos , Endocitose/fisiologia , Humanos , Relação Estrutura-Atividade , Propriedades de Superfície
14.
Pharm Nanotechnol ; 11(4): 390-395, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37046200

RESUMO

INTRODUCTION: For the long-term success of implant treatment, prevention of biological complications, including pre-implant diseases, plays an important role. The use of antimicrobial coatings is one of the prosperous methods in this field. The aim of this study is to evaluate the antimicrobial effects of healing abutments coated with gelatin-curcumin nanocomposite. METHODS: This study included 48 healing abutments in the form of a control group (titanium healing abutments without coating) and an intervention group (titanium healing abutments coated with gelatincurcumin nanocomposite). The disc diffusion method was used to evaluate the antimicrobial effects of coated healing abutments against Escherichia coli, Staphylococcus aureus and Enterococcus faecalis and the results were reported in a non-growth zone area. RESULTS AND DISCUSSION: Gelatin-curcumin nanocomposite caused significant non-growth aura for all three bacteria compared to the control group. For the control group (healing abutments without coating), the antimicrobial effects (non-growth zone) were zero. Besides, gelatin-curcumin nanocomposite had the greatest inhibiting effect on the growth of S. aureus, then E. coli and finally E. faecalis. CONCLUSION: The results of our study showed that the coating used was able to significantly demonstrate a non-growth zone against all three bacteria compared to the control group without coating. Further evaluations in various physicochemical, mechanical, and antimicrobial fields are necessary for the animal model and clinical phase.


Assuntos
Anti-Infecciosos , Curcumina , Animais , Titânio , Staphylococcus aureus , Curcumina/farmacologia , Escherichia coli , Gelatina , Antibacterianos/farmacologia
15.
Front Dent ; 20: 8, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37312828

RESUMO

Objectives: Vitamin D deficiency appears to have a major effect on periodontal tissue health. The present study aimed to assess the association of the serum level of 25-hydroxyvitamin D and chronic periodontitis in postmenopausal women. Materials and Methods: This research was done on 30 postmenopausal women with chronic periodontitis who all had at least 20 natural teeth. Intravenous blood samples were taken from the study population at baseline and after completion of non-surgical periodontal treatment. This was followed by assessment of serum levels of 25-hydroxyvitamin D. Next, clinical parameters of all teeth except for third molars were measured, which included pocket depth (PD), gingival index (GI), and plaque index (PI). Data were analyzed by paired t-test and its non-parametric equivalent, the Wilcoxon test. P<0.05 was considered significant. Results: The mean PD, PI and GI before and after the intervention were significantly different (P<0.05). There was, however, no significant difference between the mean vitamin D concentrations before and after treatment (P>0.05). Conclusion: According to the results obtained in the present study, there is no association between serum vitamin D concentrations and chronic periodontitis in postmenopausal women.

16.
Biomedicines ; 11(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38002010

RESUMO

Stroke is currently one of the primary causes of morbidity and mortality worldwide. Unfortunately, there has been a lack of effective stroke treatment. Therefore, novel treatment strategies are needed to decrease stroke-induced morbidity and promote the patient's quality of life. Reactive oxygen species (ROS) have been recognized as one of the major causes of brain injury after ischemic stroke. Antioxidant therapy seems to be an effective treatment in the management of oxidative stress relevant to inflammatory disorders like stroke. However, the in vivo efficacy of traditional anti-oxidative substances is greatly limited due to their non-specific distribution and poor localization in the disease region. In recent years, antioxidant nanoparticles (NPs) have demonstrated a clinical breakthrough for stroke treatment. Some NPs have intrinsic antioxidant properties and act as antioxidants to scavenge ROS. Moreover, NPs provide protection to the antioxidant agents/enzymes while effectively delivering them into unreachable areas like the brain. Because of their nanoscale dimensions, NPs are able to efficiently pass through the BBB, and easily reach the damaged site. Here, we discuss the challenges, recent advances, and perspectives of antioxidant NPs in stroke treatment.

17.
Bioengineering (Basel) ; 10(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37237629

RESUMO

The placement of orthodontic appliances into the oral area can lead to infection, inflammatory and gingival collapse. Using an antimicrobial and anti-inflammatory material in the matrix of orthodontic appliance may help to reduce these issues. This study aimed to assess the release pattern, the antimicrobial action and the flexural strength of self-cured acrylic resins after adding different weight percentages of curcumin nanoparticles (nanocurcumin). In this in-vitro study, 60 acrylic resin samples were divided into five groups (n = 12) based on the weight percentage of curcumin nanoparticles added to the acrylic powder (0 for control, 0.5, 1, 2.5, and 5%). Then, the dissolution apparatus was used for the release assessment of nanocurcumin form the resins. For antimicrobial action assessment, the disk diffusion method was used and a three-point bending test was performed with a speed of 5 mm/min to determine the flexural strength. Data were analyzed using one-way analysis of variance (ANOVA) and Post-Hoc Tukey tests (with p < 0.05 as significant level). The microscopic images showed the homogeny distribution of nanocuricumin in self-cured acrylic resins in varied concentrations. The release pattern showed a two-step release pattern for all concentrations of nanocurcumin. The one-way ANOVA outcomes indicated that adding curcumin nanoparticles to self-cured resin increased the diameter of the inhibition zones for the groups against Streptococcus mutans (S. mutans) significantly (p < 0.0001). Additionally, as the weight percentage of curcumin nanoparticles increased, the flexural strength decreased (p < 0.0001). However, all strength values were higher than the standard value (50 MPa). No significant difference was detected between the control group and the group with 0.5 percent (p = 0.57). Considering the proper release pattern and the potent antimicrobial activity of curcumin nanoparticles, then the preparing self-cured resins containing curcumin nanoparticles can be beneficial for antimicrobial aims without damaging the flexural strength to use in orthodontic removable applications.

18.
Biomedicines ; 11(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002075

RESUMO

Mesoporous silica nanoparticles (MSNPs) have been reported as an effective system to co-deliver a variety of different agents to enhance efficiency and improve biocompatibility. This study was aimed at the preparation, physicochemical characterization, antimicrobial effects, biocompatibility, and cytotoxicity of vancomycin and meropenem co-loaded in the mesoporous silica nanoparticles (Van/Mrp-MSNPs). The prepared nanoparticles were explored for their physicochemical features, antibacterial and antibiofilm effects, biocompatibility, and cytotoxicity. The minimum inhibitory concentrations (MICs) of the Van/Mrp-MSNPs (0.12-1 µg/mL) against Staphylococcus aureus isolates were observed to be lower than those of the same concentrations of vancomycin and meropenem. The minimum biofilm inhibitory concentration (MBIC) range of the Van/Mrp-MSNPs was 8-64 µg/mL, which was lower than the meropenem and vancomycin MBICs. The bacterial adherence was not significantly decreased upon exposure to levels lower than the MICs of the MSNPs and Van/Mrp-MSNPs. The viability of NIH/3T3 cells treated with serial concentrations of the MSNPs and Van/Mrp-MSNPs were 73-88% and 74-90%, respectively. The Van/Mrp-MSNPs displayed considerable inhibitory effects against MRSA, favorable biocompatibility, and low cytotoxicity. The Van/Mrp-MSNPs could be a potential system for the treatment of infections.

19.
Diseases ; 11(1)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36975597

RESUMO

BACKGROUND: Porphyromonas gingivalis (P. gingivalis) has always been one of the leading causes of periodontal disease, and antibiotics are commonly used to control it. Numerous side effects of synthetic drugs, as well as the spread of drug resistance, have led to a tendency toward using natural antimicrobials, such as curcumin. The present study aimed to prepare and physicochemically characterize curcumin-loaded silica nanoparticles and to detect their antimicrobial effects on P. gingivalis. METHODS: Curcumin-loaded silica nanoparticles were prepared using the chemical precipitation method and then were characterized using conventional methods (properties such as the particle size, drug loading percentage, and release pattern). P. gingivalis was isolated from one patient with chronic periodontal diseases. The patient's gingival crevice fluid was sampled using sterile filter paper and was transferred to the microbiology laboratory in less than 30 min. The disk diffusion method was used to determine the sensitivity of clinically isolated P. gingivalis to curcumin-loaded silica nanoparticles. SPSS software, version 20, was used to compare the data between groups with a p value of <0.05 as the level of significance. Then, one-way ANOVA testing was utilized to compare the groups. RESULTS: The curcumin-loaded silica nanoparticles showed a nanometric size and a drug loading percentage of 68% for curcumin. The nanoparticles had a mesoporous structure and rod-shaped morphology. They showed a relatively rapid release pattern in the first 5 days. The release of the drug from the nanoparticles continued slowly until the 45th day. The results of in vitro antimicrobial tests showed that P. gingivalis was sensitive to the curcumin-loaded silica nanoparticles at concentrations of 50, 25, 12.5, and 6.25 µg/mL. One-way ANOVA showed that there was a significant difference between the mean growth inhibition zone, and the concentration of 50 µg/mL showed the highest inhibition zone (p ≤ 0.05). CONCLUSION: Based on the obtained results, it can be concluded that the local nanocurcumin application for periodontal disease and implant-related infections can be considered a promising method for the near future in dentistry.

20.
Biomimetics (Basel) ; 8(2)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37092389

RESUMO

The aim of this study was to assess the multi-phasic use of extracorporeal shock wave therapy (ESWT) as an adjuvant treatment to accelerate the osseointegration of titanium dental implants. Initially, twelve titanium mini-screws were inserted in femur bones of six New Zealand rabbits in three groups; the one-time treated group, the three-time treated group, and the control group (without ESWT). Then, 1800 focused shockwaves with an energy flux density of 0.3 mJ/mm2 in every phase were used. Fourteen days after the last phase of ESWT, the animals were sacrificed to assess the osseointegration of screws via micro-computed tomography scan (micro-CT scan), biomechanical pull-out test, and histopathological analysis. Pull-out and histopathology analysis showed that the ESWT significantly increased bone regeneration and osseointegration around the implants compared to the control group (p < 0.05). Moreover, the pull-out test confirmed that the three-time treated screws needed more force to pull the bone out compared to the other two groups (p < 0.05). The mean bone volume fraction between the control group, the one-time treated group, and the three-time treatment group were not statistically significant (p > 0.05) according to the micro-CT scan results. Based on our results, ESWT can be suggested as a non-invasive and cost-effective adjuvant for osseointegration of dental implants. However, more in vivo studies and clinical trials are needed for validation of this finding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA