Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 186(2): 1336-1353, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33788927

RESUMO

Drought at flowering and grain filling greatly reduces maize (Zea mays) yield. Climate change is causing earlier and longer-lasting periods of drought, which affect the growth of multiple maize organs throughout development. To study how long periods of water deficit impact the dynamic nature of growth, and to determine how these relate to reproductive drought, we employed a high-throughput phenotyping platform featuring precise irrigation, imaging systems, and image-based biomass estimations. Prolonged drought resulted in a reduction of growth rate of individual organs-though an extension of growth duration partially compensated for this-culminating in lower biomass and delayed flowering. However, long periods of drought did not affect the highly organized succession of maximal growth rates of the distinct organs, i.e. leaves, stems, and ears. Two drought treatments negatively affected distinct seed yield components: Prolonged drought mainly reduced the number of spikelets, and drought during the reproductive period increased the anthesis-silking interval. The identification of these divergent biomass and yield components, which were affected by the shift in duration and intensity of drought, will facilitate trait-specific breeding toward future climate-resilient crops.


Assuntos
Estresse Fisiológico , Zea mays/fisiologia , Biomassa , Mudança Climática , Secas , Flores/crescimento & desenvolvimento , Flores/fisiologia , Melhoramento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Água/fisiologia , Zea mays/crescimento & desenvolvimento
2.
Plant Mol Biol ; 103(6): 597-608, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32346812

RESUMO

KEY MESSAGE: Nanobody-heavy chain (VHH-Fc) antibody formats have the potential to immunomodulate even highly accumulating proteins and provide a valuable tool to experimentally modulate the subcellular distribution of seed storage proteins. Recombinant antibodies often obtain high accumulation levels in plants, and thus, besides being the actual end-product, antibodies targeting endogenous host proteins can be used to interfere with the localization and functioning of their corresponding antigens. Here, we compared the effect of a seed-expressed nanobody-heavy chain (VHH-Fc) antibody against the highly abundant Arabidopsis thaliana globulin seed storage protein cruciferin with that of a VHH-Fc antibody without endogenous target. Both antibodies reached high accumulation levels of around 10% of total soluble protein, but strikingly, another significant part was present in the insoluble protein fraction and was recovered only after extraction under denaturing conditions. In seeds containing the anti-cruciferin antibodies but not the antibody without endogenous target, the amount of soluble, processed globulin subunits was severely reduced and a major part of the cruciferin molecules was found as precursor in the insoluble fraction. Moreover, in these seeds, aberrant vacuolar phenotypes were observed that were different from the effects caused by the depletion of globulins in knock-out seeds. Remarkably, the seeds with strongly reduced globulin amounts are fully viable and germinate with frequencies similar to wild type, illustrating how flexible seeds can retrieve amino acids from the stored proteins to start germination.


Assuntos
Anticorpos/imunologia , Anticorpos/metabolismo , Globulinas/imunologia , Proteínas de Armazenamento de Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Armazenamento de Sementes/genética , Vacúolos/metabolismo
3.
Plant Cell ; 28(10): 2417-2434, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27729396

RESUMO

Plant growth and crop yield are negatively affected by a reduction in water availability. However, a clear understanding of how growth is regulated under nonlethal drought conditions is lacking. Recent advances in genomics, phenomics, and transcriptomics allow in-depth analysis of natural variation. In this study, we conducted a detailed screening of leaf growth responses to mild drought in a worldwide collection of Arabidopsis thaliana accessions. The genetic architecture of the growth responses upon mild drought was investigated by subjecting the different leaf growth phenotypes to genome-wide association mapping and by characterizing the transcriptome of young developing leaves. Although no major effect locus was found to be associated with growth in mild drought, the transcriptome analysis delivered further insight into the natural variation of transcriptional responses to mild drought in a specific tissue. Coexpression analysis indicated the presence of gene clusters that co-vary over different genetic backgrounds, among others a cluster of genes with important regulatory functions in the growth response to osmotic stress. It was found that the occurrence of a mild drought stress response in leaves can be inferred with high accuracy across accessions based on the expression profile of 283 genes. A genome-wide association study on the expression data revealed that trans regulation seems to be more important than cis regulation in the transcriptional response to environmental perturbations.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Secas , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Folhas de Planta/genética
4.
Plant Physiol ; 171(1): 590-605, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26932234

RESUMO

Leaves are the plant's powerhouses, providing energy for all organs through sugar production during photosynthesis. However, sugars serve not only as a metabolic energy source for sink tissues but also as signaling molecules, affecting gene expression through conserved signaling pathways to regulate plant growth and development. Here, we describe an in vitro experimental assay, allowing one to alter the sucrose (Suc) availability during early Arabidopsis (Arabidopsis thaliana) leaf development, with the aim to identify the affected cellular and molecular processes. The transfer of seedlings to Suc-containing medium showed a profound effect on leaf growth by stimulating cell proliferation and postponing the transition to cell expansion. Furthermore, rapidly after transfer to Suc, mesophyll cells contained fewer and smaller plastids, which are irregular in shape and contain fewer starch granules compared with control mesophyll cells. Short-term transcriptional responses after transfer to Suc revealed the repression of well-known sugar-responsive genes and multiple genes encoded by the plastid, on the one hand, and up-regulation of a GLUCOSE-6-PHOSPHATE TRANSPORTER (GPT2), on the other hand. Mutant gpt2 seedlings showed no stimulation of cell proliferation and no repression of chloroplast-encoded transcripts when transferred to Suc, suggesting that GPT2 plays a critical role in the Suc-mediated effects on early leaf growth. Our findings, therefore, suggest that induction of GPT2 expression by Suc increases the import of glucose-6-phosphate into the plastids that would repress chloroplast-encoded transcripts, restricting chloroplast differentiation. Retrograde signaling from the plastids would then delay the transition to cell expansion and stimulate cell proliferation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Cloroplastos/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Sacarose/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Células do Mesofilo/efeitos dos fármacos , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sacarose/farmacologia
5.
Plant Cell ; 26(1): 210-29, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24443518

RESUMO

The transcriptional coactivator ANGUSTIFOLIA3 (AN3) stimulates cell proliferation during Arabidopsis thaliana leaf development, but the molecular mechanism is largely unknown. Here, we show that inducible nuclear localization of AN3 during initial leaf growth results in differential expression of important transcriptional regulators, including GROWTH REGULATING FACTORs (GRFs). Chromatin purification further revealed the presence of AN3 at the loci of GRF5, GRF6, CYTOKININ RESPONSE FACTOR2, CONSTANS-LIKE5 (COL5), HECATE1 (HEC1), and ARABIDOPSIS RESPONSE REGULATOR4 (ARR4). Tandem affinity purification of protein complexes using AN3 as bait identified plant SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodeling complexes formed around the ATPases BRAHMA (BRM) or SPLAYED. Moreover, SWI/SNF ASSOCIATED PROTEIN 73B (SWP73B) is recruited by AN3 to the promoters of GRF5, GRF3, COL5, and ARR4, and both SWP73B and BRM occupy the HEC1 promoter. Furthermore, we show that AN3 and BRM genetically interact. The data indicate that AN3 associates with chromatin remodelers to regulate transcription. In addition, modification of SWI3C expression levels increases leaf size, underlining the importance of chromatin dynamics for growth regulation. Our results place the SWI/SNF-AN3 module as a major player at the transition from cell proliferation to cell differentiation in a developing leaf.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica de Plantas , Proteínas Repressoras/fisiologia , Adenosina Trifosfatases/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Diferenciação Celular , Proliferação de Células , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Ciclina B/genética , Ciclina B/metabolismo , Genoma de Planta , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
6.
Plant Physiol ; 167(3): 800-16, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25604532

RESUMO

Although the response of plants exposed to severe drought stress has been studied extensively, little is known about how plants adapt their growth under mild drought stress conditions. Here, we analyzed the leaf and rosette growth response of six Arabidopsis (Arabidopsis thaliana) accessions originating from different geographic regions when exposed to mild drought stress. The automated phenotyping platform WIWAM was used to impose stress early during leaf development, when the third leaf emerges from the shoot apical meristem. Analysis of growth-related phenotypes showed differences in leaf development between the accessions. In all six accessions, mild drought stress reduced both leaf pavement cell area and number without affecting the stomatal index. Genome-wide transcriptome analysis (using RNA sequencing) of early developing leaf tissue identified 354 genes differentially expressed under mild drought stress in the six accessions. Our results indicate the existence of a robust response over different genetic backgrounds to mild drought stress in developing leaves. The processes involved in the overall mild drought stress response comprised abscisic acid signaling, proline metabolism, and cell wall adjustments. In addition to these known severe drought-related responses, 87 genes were found to be specific for the response of young developing leaves to mild drought stress.


Assuntos
Arabidopsis/fisiologia , Secas , Ecótipo , Folhas de Planta/fisiologia , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Genes de Plantas , Fenótipo , Folhas de Planta/anatomia & histologia , Plântula/crescimento & desenvolvimento
7.
Plant Physiol ; 165(2): 519-527, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24710067

RESUMO

In vitro stress assays are commonly used to study the responses of plants to abiotic stress and to assess stress tolerance. A literature review reveals that most studies use very high stress levels and measure criteria such as germination, plant survival, or the development of visual symptoms such as bleaching. However, we show that these parameters are indicators of very severe stress, and such studies thus only provide incomplete information about stress sensitivity in Arabidopsis (Arabidopsis thaliana). Similarly, transcript analysis revealed that typical stress markers are only induced at high stress levels in young seedlings. Therefore, tools are needed to study the effects of mild stress. We found that the commonly used stress-inducing agents mannitol, sorbitol, NaCl, and hydrogen peroxide impact shoot growth in a highly specific and dose-dependent way. Therefore, shoot growth is a sensitive, relevant, and easily measured phenotype to assess stress tolerance over a wide range of stress levels. Finally, our data suggest that care should be taken when using mannitol as an osmoticum.

8.
Proc Natl Acad Sci U S A ; 109(34): 13853-8, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22869741

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is a large multiprotein E3 ubiquitin ligase involved in ubiquitin-dependent proteolysis of key cell cycle regulatory proteins, including the destruction of mitotic cyclins at the metaphase-to-anaphase transition. Despite its importance, the role of the APC/C in plant cells and the regulation of its activity during cell division remain poorly understood. Here, we describe the identification of a plant-specific negative regulator of the APC/C complex, designated SAMBA. In Arabidopsis thaliana, SAMBA is expressed during embryogenesis and early plant development and plays a key role in organ size control. Samba mutants produced larger seeds, leaves, and roots, which resulted from enlarged root and shoot apical meristems, and, additionally, they had a reduced fertility attributable to a hampered male gametogenesis. Inactivation of SAMBA stabilized A2-type cyclins during early development. Our data suggest that SAMBA regulates cell proliferation during early development by targeting CYCLIN A2 for APC/C-mediated proteolysis.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Ciclina A/química , Mutação , Complexos Ubiquitina-Proteína Ligase/fisiologia , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Ciclo Celular , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Homologia de Sequência de Aminoácidos , Complexos Ubiquitina-Proteína Ligase/genética
9.
Plant Physiol ; 162(1): 319-32, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23553636

RESUMO

Leaf growth is a complex developmental process that is continuously fine-tuned by the environment. Various abiotic stresses, including mild drought stress, have been shown to inhibit leaf growth in Arabidopsis (Arabidopsis thaliana), but the underlying mechanisms remain largely unknown. Here, we identify the redundant Arabidopsis transcription factors ETHYLENE RESPONSE FACTOR5 (ERF5) and ERF6 as master regulators that adapt leaf growth to environmental changes. ERF5 and ERF6 gene expression is induced very rapidly and specifically in actively growing leaves after sudden exposure to osmotic stress that mimics mild drought. Subsequently, enhanced ERF6 expression inhibits cell proliferation and leaf growth by a process involving gibberellin and DELLA signaling. Using an ERF6-inducible overexpression line, we demonstrate that the gibberellin-degrading enzyme GIBBERELLIN 2-OXIDASE6 is transcriptionally induced by ERF6 and that, consequently, DELLA proteins are stabilized. As a result, ERF6 gain-of-function lines are dwarfed and hypersensitive to osmotic stress, while the growth of erf5erf6 loss-of-function mutants is less affected by stress. Besides its role in plant growth under stress, ERF6 also activates the expression of a plethora of osmotic stress-responsive genes, including the well-known stress tolerance genes STZ, MYB51, and WRKY33. Interestingly, activation of the stress tolerance genes by ERF6 occurs independently from the ERF6-mediated growth inhibition. Together, these data fit into a leaf growth regulatory model in which ERF5 and ERF6 form a missing link between the previously observed stress-induced 1-aminocyclopropane-1-carboxylic acid accumulation and DELLA-mediated cell cycle exit and execute a dual role by regulating both stress tolerance and growth inhibition.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Água/fisiologia , Aminoácidos Cíclicos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Divisão Celular , Secas , Etilenos/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta/genética , Giberelinas/metabolismo , Glucocorticoides , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Pressão Osmótica , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Transdução de Sinais , Fatores de Transcrição/metabolismo
10.
Plant Cell ; 23(5): 1876-88, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21558544

RESUMO

Despite its relevance for agricultural production, environmental stress-induced growth inhibition, which is responsible for significant yield reductions, is only poorly understood. Here, we investigated the molecular mechanisms underlying cell cycle inhibition in young proliferating leaves of the model plant Arabidopsis thaliana when subjected to mild osmotic stress. A detailed cellular analysis demonstrated that as soon as osmotic stress is sensed, cell cycle progression rapidly arrests, but cells are kept in a latent ambivalent state allowing a quick recovery (pause). Remarkably, cell cycle arrest coincides with an increase in 1-aminocyclopropane-1-carboxylate levels and the activation of ethylene signaling. Our work showed that ethylene acts on cell cycle progression via inhibition of cyclin-dependent kinase A activity independently of EIN3 transcriptional control. When the stress persists, cells exit the mitotic cell cycle and initiate the differentiation process (stop). This stop is reflected by early endoreduplication onset, in a process independent of ethylene. Nonetheless, the potential to partially recover the decreased cell numbers remains due to the activity of meristemoids. Together, these data present a conceptual framework to understand how environmental stress reduces plant growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Etilenos/farmacologia , Transdução de Sinais/fisiologia , Aminoácidos Cíclicos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ciclo Celular/efeitos dos fármacos , Proliferação de Células , Quinases Ciclina-Dependentes/antagonistas & inibidores , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Osmose , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico , Fatores de Tempo , Transcriptoma
12.
Plant Physiol ; 159(2): 739-47, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22535421

RESUMO

Drought is responsible for considerable yield losses in agriculture due to its detrimental effects on growth. Drought responses have been extensively studied, but mostly on the level of complete plants or mature tissues. However, stress responses were shown to be highly tissue and developmental stage specific, and dividing tissues have developed unique mechanisms to respond to stress. Previously, we studied the effects of osmotic stress on dividing leaf cells in Arabidopsis (Arabidopsis thaliana) and found that stress causes early mitotic exit, in which cells end their mitotic division and start endoreduplication earlier. In this study, we analyzed this phenomenon in more detail. Osmotic stress induces changes in gibberellin metabolism, resulting in the stabilization of DELLAs, which are responsible for mitotic exit and earlier onset of endoreduplication. Consequently, this response is absent in mutants with altered gibberellin levels or DELLA activity. Mitotic exit and onset of endoreduplication do not correlate with an up-regulation of known cell cycle inhibitors but are the result of reduced levels of DP-E2F-LIKE1/E2Fe and UV-B-INSENSITIVE4, both inhibitors of the developmental transition from mitosis to endoreduplication by modulating anaphase-promoting complex/cyclosome activity, which are down-regulated rapidly after DELLA stabilization. This work fits into an emerging view of DELLAs as regulators of cell division by regulating the transition to endoreduplication and differentiation.


Assuntos
Arabidopsis/citologia , Diferenciação Celular , Giberelinas/metabolismo , Folhas de Planta/metabolismo , Estresse Fisiológico , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Contagem de Células , Proliferação de Células , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Giberelinas/genética , Manitol/farmacologia , Mitose , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Estabilidade Proteica , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
13.
J Proteome Res ; 10(3): 1018-29, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21142212

RESUMO

Plants respond to environmental stress by dynamically reprogramming their growth. Whereas stress onset is accompanied by rapid growth inhibition leading to smaller organs, growth will recover and adapt once the stress conditions become stable and do no threaten plant survival. Here, adaptation of growing Arabidopsis thaliana leaves to mild and prolonged osmotic stress was investigated by means of a complete metabolic labeling strategy with the (15)N-stable isotope as a complement to a previously published transcript and metabolite profiling. Global analysis of protein changes revealed that plastidial ATPase, Calvin cycle, and photorespiration were down-regulated, but mitochondrial ATP synthesis was up-regulated, indicating the importance of mitochondria in preserving plastid functions during water stress. Although transcript and protein data correlated well with the stable and prolonged character of the applied stress, numerous proteins were clearly regulated at the post-transcriptional level that could, at least partly, be related to changes in protein synthesis and degradation. In conclusion, proteomics using the (15)N labeling helped understand the mechanisms underlying growth adaptation to osmotic stress and allowed the identification of candidate genes to improve plant growth under limited water.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/fisiologia , Mitocôndrias/metabolismo , Folhas de Planta/metabolismo , Plastídeos/metabolismo , Proteoma/análise , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Isótopos de Nitrogênio/metabolismo , Pressão Osmótica , Folhas de Planta/citologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
14.
Front Plant Sci ; 12: 640914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692820

RESUMO

Hyperspectral imaging is a promising tool for non-destructive phenotyping of plant physiological traits, which has been transferred from remote to proximal sensing applications, and from manual laboratory setups to automated plant phenotyping platforms. Due to the higher resolution in proximal sensing, illumination variation and plant geometry result in increased non-biological variation in plant spectra that may mask subtle biological differences. Here, a better understanding of spectral measurements for proximal sensing and their application to study drought, developmental and diurnal responses was acquired in a drought case study of maize grown in a greenhouse phenotyping platform with a hyperspectral imaging setup. The use of brightness classification to reduce the illumination-induced non-biological variation is demonstrated, and allowed the detection of diurnal, developmental and early drought-induced changes in maize reflectance and physiology. Diurnal changes in transpiration rate and vapor pressure deficit were significantly correlated with red and red-edge reflectance. Drought-induced changes in effective quantum yield and water potential were accurately predicted using partial least squares regression and the newly developed Water Potential Index 2, respectively. The prediction accuracy of hyperspectral indices and partial least squares regression were similar, as long as a strong relationship between the physiological trait and reflectance was present. This demonstrates that current hyperspectral processing approaches can be used in automated plant phenotyping platforms to monitor physiological traits with a high temporal resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA