RESUMO
During embryonic and postnatal development, organs and tissues grow steadily to achieve their final size at the end of puberty. However, little is known about the cellular dynamics that mediate postnatal growth. By combining in vivo clonal lineage tracing, proliferation kinetics, single-cell transcriptomics, and in vitro micro-pattern experiments, we resolved the cellular dynamics taking place during postnatal skin epidermis expansion. Our data revealed that harmonious growth is engineered by a single population of developmental progenitors presenting a fixed fate imbalance of self-renewing divisions with an ever-decreasing proliferation rate. Single-cell RNA sequencing revealed that epidermal developmental progenitors form a more uniform population compared with adult stem and progenitor cells. Finally, we found that the spatial pattern of cell division orientation is dictated locally by the underlying collagen fiber orientation. Our results uncover a simple design principle of organ growth where progenitors and differentiated cells expand in harmony with their surrounding tissues.
Assuntos
Células Epidérmicas/metabolismo , Epiderme/crescimento & desenvolvimento , Pele/crescimento & desenvolvimento , Animais , Animais não Endogâmicos , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Linhagem da Célula/genética , Proliferação de Células/fisiologia , Células Cultivadas , Células Epidérmicas/patologia , Epiderme/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco/citologiaRESUMO
The ability of the skin to grow in response to stretching has been exploited in reconstructive surgery1. Although the response of epidermal cells to stretching has been studied in vitro2,3, it remains unclear how mechanical forces affect their behaviour in vivo. Here we develop a mouse model in which the consequences of stretching on skin epidermis can be studied at single-cell resolution. Using a multidisciplinary approach that combines clonal analysis with quantitative modelling and single-cell RNA sequencing, we show that stretching induces skin expansion by creating a transient bias in the renewal activity of epidermal stem cells, while a second subpopulation of basal progenitors remains committed to differentiation. Transcriptional and chromatin profiling identifies how cell states and gene-regulatory networks are modulated by stretching. Using pharmacological inhibitors and mouse mutants, we define the step-by-step mechanisms that control stretch-mediated tissue expansion at single-cell resolution in vivo.
Assuntos
Mecanotransdução Celular/fisiologia , Análise de Célula Única , Pele/citologia , Pele/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Animais , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Cromatina/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Células Clonais/citologia , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos , Hidrogéis/administração & dosagem , Hidrogéis/farmacologia , Mecanotransdução Celular/efeitos dos fármacos , Mecanotransdução Celular/genética , Camundongos , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , RNA Mensageiro/genética , RNA-Seq , Pele/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas de Sinalização YAPRESUMO
Glandular epithelia, including the mammary and prostate glands, are composed of basal cells (BCs) and luminal cells (LCs)1,2. Many glandular epithelia develop from multipotent basal stem cells (BSCs) that are replaced in adult life by distinct pools of unipotent stem cells1,3-8. However, adult unipotent BSCs can reactivate multipotency under regenerative conditions and upon oncogene expression3,9-13. This suggests that an active mechanism restricts BSC multipotency under normal physiological conditions, although the nature of this mechanism is unknown. Here we show that the ablation of LCs reactivates the multipotency of BSCs from multiple epithelia both in vivo in mice and in vitro in organoids. Bulk and single-cell RNA sequencing revealed that, after LC ablation, BSCs activate a hybrid basal and luminal cell differentiation program before giving rise to LCs-reminiscent of the genetic program that regulates multipotency during embryonic development7. By predicting ligand-receptor pairs from single-cell data14, we find that TNF-which is secreted by LCs-restricts BC multipotency under normal physiological conditions. By contrast, the Notch, Wnt and EGFR pathways were activated in BSCs and their progeny after LC ablation; blocking these pathways, or stimulating the TNF pathway, inhibited regeneration-induced BC multipotency. Our study demonstrates that heterotypic communication between LCs and BCs is essential to maintain lineage fidelity in glandular epithelial stem cells.
Assuntos
Comunicação Celular , Células Epiteliais/citologia , Células-Tronco Multipotentes/citologia , Animais , Linhagem da Célula , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Feminino , Homeostase , Humanos , Masculino , Glândulas Mamárias Animais/citologia , Camundongos , Células-Tronco Multipotentes/metabolismo , Organoides/citologia , Próstata/citologia , RNA Mensageiro/genética , RNA-Seq , Receptores Notch/metabolismo , Glândulas Salivares/citologia , Análise de Célula Única , Pele/citologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Wnt/metabolismoRESUMO
Reliable peptide identification is key in mass spectrometry (MS) based proteomics. To this end, the target decoy approach (TDA) has become the cornerstone for extracting a set of reliable peptide-to-spectrum matches (PSMs) that will be used in downstream analysis. Indeed, TDA is now the default method to estimate the false discovery rate (FDR) for a given set of PSMs, and users typically view it as a universal solution for assessing the FDR in the peptide identification step. However, the TDA also relies on a minimal set of assumptions, which are typically never verified in practice. We argue that a violation of these assumptions can lead to poor FDR control, which can be detrimental to any downstream data analysis. We here therefore first clearly spell out these TDA assumptions, and introduce TargetDecoy, a Bioconductor package with all the necessary functionality to control the TDA quality and its underlying assumptions for a given set of PSMs.
Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Proteômica/métodos , Análise de Dados , Controle de Qualidade , Bases de Dados de Proteínas , AlgoritmosRESUMO
In single-cell transcriptomics, differential gene expression (DE) analyses typically focus on testing differences in the average expression of genes between cell types or conditions of interest. Single-cell transcriptomics, however, also has the promise to prioritise genes for which the expression differ in other aspects of the distribution. Here we develop a workflow for assessing differential detection (DD), which tests for differences in the average fraction of samples or cells in which a gene is detected. After benchmarking eight different DD data analysis strategies, we provide a unified workflow for jointly assessing DE and DD. Using simulations and two case studies, we show that DE and DD analysis provide complementary information, both in terms of the individual genes they report and in the functional interpretation of those genes.
RESUMO
paaR2-paaA2-parE2 is a three-component toxin-antitoxin module found in prophage CP-993P of Escherichia coli O157:H7. Transcription regulation of this module occurs via the 123-amino-acid regulator PaaR2, which forms a large oligomeric structure. Despite appearing to be well folded, PaaR2 withstands crystallization, as does its N-terminal DNA-binding domain. Native mass spectrometry was used to screen for nanobodies that form a unique complex and stabilize the octameric structure of PaaR2. One such nanobody, Nb33, allowed crystallization of the protein. The resulting crystals belong to space group F432, with unit-cell parameter a = 317â Å, diffract to 4.0â Å resolution and are likely to contain four PaaR2 monomers and four nanobody monomers in the asymmetric unit. Crystals of two truncates containing the N-terminal helix-turn-helix domain also interact with Nb33, and the corresponding co-crystals diffracted to 1.6 and 1.75â Å resolution.