RESUMO
Despite the transient hyporeactivity of neonatal platelets, full-term neonates do not display a bleeding tendency, suggesting potential compensatory mechanisms which allow for balanced and efficient neonatal hemostasis. This study aimed to utilize small-volume, whole blood platelet functional assays to assess the neonatal platelet response downstream of the hemostatic platelet agonists thrombin and adenosine diphosphate (ADP). Thrombin activates platelets via the protease-activated receptors (PARs) 1 and 4, whereas ADP signals via the receptors P2Y1 and P2Y12 as a positive feedback mediator of platelet activation. We observed that neonatal and cord blood-derived platelets exhibited diminished PAR1-mediated granule secretion and integrin activation relative to adult platelets, correlating to reduced PAR1 expression by neonatal platelets. PAR4-mediated granule secretion was blunted in neonatal platelets, correlating to lower PAR4 expression as compared to adult platelets, while PAR4 mediated GPIIb/IIIa activation was similar between neonatal and adult platelets. Under high shear stress, cord blood-derived platelets yielded similar thrombin generation rates but reduced phosphatidylserine expression as compared to adult platelets. Interestingly, we observed enhanced P2Y1/P2Y12-mediated dense granule trafficking in neonatal platelets relative to adults, although P2Y1/P2Y12 expression in neonatal, cord, and adult platelets were similar, suggesting that neonatal platelets may employ an ADP-mediated positive feedback loop as a potential compensatory mechanism for neonatal platelet hyporeactivity.
Assuntos
Plaquetas/metabolismo , Grânulos Citoplasmáticos/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Biomarcadores , Coagulação Sanguínea , Humanos , Recém-Nascido , Integrinas/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Resistência ao Cisalhamento , Trombina/metabolismoRESUMO
Heme cytotoxicity is minimized by a two-step catabolic reaction that generates biliverdin (BV) and bilirubin (BR) tetrapyrroles. The second step is regulated by two non-redundant biliverdin reductases (IXα (BLVRA) and IXß (BLVRB)), which retain isomeric specificity and NAD(P)H-dependent redox coupling linked to BR's antioxidant function. Defective BLVRB enzymatic activity with antioxidant mishandling has been implicated in metabolic consequences of hematopoietic lineage fate and enhanced platelet counts in humans. We now outline an integrated platform of in silico and crystallographic studies for the identification of an initial class of compounds inhibiting BLVRB with potencies in the nanomolar range. We found that the most potent BLVRB inhibitors contain a tricyclic hydrocarbon core structure similar to the isoalloxazine ring of flavin mononucleotide and that both xanthene- and acridine-based compounds inhibit BLVRB's flavin and dichlorophenolindophenol (DCPIP) reductase functions. Crystallographic studies of ternary complexes with BLVRB-NADP+-xanthene-based compounds confirmed inhibitor binding adjacent to the cofactor nicotinamide and interactions with the Ser-111 side chain. This residue previously has been identified as critical for maintaining the enzymatic active site and cellular reductase functions in hematopoietic cells. Both acridine- and xanthene-based compounds caused selective and concentration-dependent loss of redox coupling in BLVRB-overexpressing promyelocytic HL-60 cells. These results provide promising chemical scaffolds for the development of enhanced BLVRB inhibitors and identify chemical probes to better dissect the role of biliverdins, alternative substrates, and BLVRB function in physiologically relevant cellular contexts.
Assuntos
Inibidores Enzimáticos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , 2,6-Dicloroindofenol/química , 2,6-Dicloroindofenol/farmacologia , Coenzimas/química , Coenzimas/metabolismo , Simulação por Computador , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células HL-60 , Humanos , Niacinamida/química , Niacinamida/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismoRESUMO
Bioenergetic requirements of hematopoietic stem cells and pluripotent stem cells (PSCs) vary with lineage fate, and cellular adaptations rely largely on substrate (glucose/glutamine) availability and mitochondrial function to balance tricarboxylic acid (TCA)-derived anabolic and redox-regulated antioxidant functions. Heme synthesis and degradation converge in a linear pathway that utilizes TCA cycle-derived carbon in cataplerotic reactions of tetrapyrrole biosynthesis, terminated by NAD(P)H-dependent biliverdin reductases (IXα, BLVRA and IXß, BLVRB) that lead to bilirubin generation and cellular antioxidant functions. We now demonstrate that PSCs with targeted deletion of BLVRB display physiologically defective antioxidant activity and cellular viability, associated with a glutamine-restricted defect in TCA entry that was computationally predicted using gene/metabolite topological network analysis and subsequently validated by bioenergetic and isotopomeric studies. Defective BLVRB-regulated glutamine utilization was accompanied by exaggerated glycolytic accumulation of the rate-limiting hexokinase reaction product glucose-6-phosphate. BLVRB-deficient embryoid body formation (a critical size parameter of early lineage fate potential) demonstrated enhanced sensitivity to the pentose phosphate pathway (PPP) inhibitor 6-aminonicotinamide with no differences in the glycolytic pathway inhibitor 2-deoxyglucose. These collective data place heme catabolism in a crucial pathway of glutamine-regulated bioenergetic metabolism and suggest that early stages of lineage fate potential require glutamine anaplerotic functions and an intact PPP, which are, in part, regulated by BLVRB activity. In principle, BLVRB inhibition represents an alternative strategy for modulating cellular glutamine utilization with consequences for cancer and hematopoietic metabolism.
Assuntos
Células-Tronco Embrionárias/metabolismo , Glutamina/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/fisiologia , Células Cultivadas , Metabolismo Energético/genética , Técnicas de Introdução de Genes , Glucose/metabolismo , Glicólise/genética , Heme/metabolismo , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Via de Pentose Fosfato/genética , Especificidade por SubstratoRESUMO
Human blood cell counts are tightly maintained within narrow physiologic ranges, largely controlled by cytokine-integrated signaling and transcriptional circuits that regulate multilineage hematopoietic specification. Known genetic loci influencing blood cell production account for <10% of platelet and red blood cell variability, and thrombopoietin/cellular myeloproliferative leukemia virus liganding is dispensable for definitive thrombopoiesis, establishing that fundamentally important modifier loci remain unelucidated. In this study, platelet transcriptome sequencing and extended thrombocytosis cohort analyses identified a single loss-of-function mutation (BLVRB(S111L)) causally associated with clonal and nonclonal disorders of enhanced platelet production. BLVRB(S111L) encompassed within the substrate/cofactor [α/ß dinucleotide NAD(P)H] binding fold is a functionally defective redox coupler using flavin and biliverdin (BV) IXß tetrapyrrole(s) and results in exaggerated reactive oxygen species accumulation as a putative metabolic signal leading to differential hematopoietic lineage commitment and enhanced thrombopoiesis. These data define the first physiologically relevant function of BLVRB and implicate its activity and/or heme-regulated BV tetrapyrrole(s) in a unique redox-regulated bioenergetic pathway governing terminal megakaryocytopoiesis; these observations also define a mechanistically restricted drug target retaining potential for enhancing human platelet counts.
Assuntos
Heme/metabolismo , Redes e Vias Metabólicas , Mutação/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Trombopoese/genética , Alelos , Antígenos CD34/metabolismo , Plaquetas/metabolismo , Linhagem da Célula , Estudos de Coortes , Células Eritroides/citologia , Células Eritroides/enzimologia , Estudos de Associação Genética , Hematopoese , Humanos , Megacariócitos/citologia , Megacariócitos/enzimologia , Oxirredução , Polimorfismo de Nucleotídeo Único/genética , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Análise de Sequência de RNA , Trombocitose/genéticaRESUMO
BACKGROUND: Developmental ontogeny of neonatal thrombopoiesis retains characteristics that are distinct from adults although molecular mechanisms remain unestablished. METHODS: We applied multiparameter quantitative platelet responses with integrated ribosome profiling/transcriptomic studies to better define gene/pathway perturbations regulating the neonatal-to-adult transition. A bioinformatics pipeline was developed to identify stable, neonatal-restricted platelet biomarkers for clinical application. RESULTS: Cord blood (CB) platelets retained the capacity for linear agonist-receptor coupling linked to phosphatidylserine (PS) exposure and α-granule release, although a restricted block in cross-agonist activation pathways was evident. Functional immaturity of synergistic signaling pathways was due to younger ontogenetic age and singular underdevelopment of the protein secretory gene network, with reciprocal expansion of developmental pathways (E2F, G2M checkpoint, c-Myc) important for megakaryocytopoiesis. Genetic perturbations regulating vesicle transport and fusion (TOM1L1, VAMP3, SNAP23, and DNM1L) and PS exposure and procoagulant activity (CLCN3) were the most significant, providing a molecular explanation for globally attenuated responses. Integrated transcriptomic and ribosomal footprints identified highly abundant (ribosome-protected) DEFA3 (encoding human defensin neutrophil peptide 3) and HBG1 as stable biomarkers of neonatal thrombopoiesis. Studies comparing CB- or adult-derived megakaryocytopoiesis confirmed inducible and abundant DEFA3 antigenic expression in CB megakaryocytes, ~3.5-fold greater than in leukocytes (the most abundant source in humans). An initial feasibility cohort of at-risk pregnancies manifested by maternal/fetal hemorrhage (chimerism) were applied for detection and validation of platelet HBG1 and DEFA3 as neonatal thrombopoiesis markers, most consistent for HBG1, which displayed gestational age-dependent expression. CONCLUSIONS: These studies establish an ontogenetically divergent stage of neonatal thrombopoiesis, and provide initial feasibility studies to track disordered fetal-to-adult megakaryocytopoiesis in vivo.
Assuntos
Plaquetas , Fosfatidilserinas , Recém-Nascido , Gravidez , Feminino , Humanos , Plaquetas/metabolismo , Fosfatidilserinas/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Trombopoese/genética , Megacariócitos/metabolismo , Peptídeos/metabolismo , Defensinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
Inflammatory stimuli have divergent effects on peripheral platelet counts, although the mechanisms of thrombocytopenic and thrombocytotic responses remain poorly understood. A candidate gene approach targeting 326 polymorphic genes enriched in thrombopoietic and cytokine signaling pathways was applied to identify single nucleotide variants (SNVs) implicated in enhanced platelet responses in cohorts with reactive thrombocytosis (RT) or essential (myeloproliferative neoplasm [MPN]) thrombocytosis (ET). Cytokine profiles incorporating a 15-member subset, pathway topology, and functional interactive networks were distinct between ET and RT, consistent with distinct regulatory pathways of exaggerated thrombopoiesis. Genetic studies using aggregate (ET + RT) or ET-restricted cohorts identified associations with 2 IFNA16 (interferon-α16) SNVs, and the ET associations were validated in a second independent cohort (P = .0002). Odds ratio of the combined ET cohort (n = 105) was 4.92, restricted to the JAK2V617F-negative subset (odds ratio, 5.01). ET substratification analysis by variant IFNA16 exhibited a statistically significant increase in IFN-α16 levels (P = .002) among 16 quantifiable cytokines. Recombinantly expressed variant IFN-α16 encompassing 3 linked non-synonymous SNVs (E65H95P133) retained comparable antiviral and pSTAT signaling profiles as native IFN-α16 (V65D95A133) or IFN-α2, although both native and variant IFN-α16 showed stage-restricted differences (compared with IFN-α2) of IFN-regulated genes in CD34+-stimulated megakaryocytes. These data implicate IFNA16 (IFN-α16 gene product) as a putative susceptibility locus (driver) within the broader disrupted cytokine network evident in MPNs, and they provide a framework for dissecting functional interactive networks regulating stress or MPN thrombopoiesis.
Assuntos
Transtornos Mieloproliferativos , Trombocitose , Humanos , Citocinas , Megacariócitos , Transtornos Mieloproliferativos/genética , Trombocitose/complicações , Trombocitose/genética , Trombopoese/genéticaRESUMO
Cytoprotective mechanisms of heme oxygenases function by derivatizing heme to generate carbon monoxide, ferrous iron, and isomeric biliverdins, followed by rapid NAD(P)H-dependent biliverdin reduction to the antioxidant bilirubin using two non-overlapping biliverdin reductases that display biliverdin isomer-restricted redox activity. Although cytoprotective functions of heme oxygenases are widely recognized, concomitant effects of downstream biliverdin reductases remain incomplete. A computational model predicated on murine hematopoietic single-cell transcriptomic data identified Blvrb as a biological driver linked to the tumor necrosis factor stress pathway as a predominant source of variation defining hematopoietic cell heterogeneity. In vivo studies using Blvrb-deficient mice established the dispensable role of Blvrb in steady-state hematopoiesis, although model validation using aged Blvrb-deficient mice established an important cytoprotective function in stress hematopoiesis with dichotomous megakaryocyte-biased hematopoietic recovery. Defective stress erythropoiesis was evident in Blvrb-/- spleens and in bone marrow erythroid development, occurring in conjunction with defective lipid peroxidation as a marker of oxidant mishandling. Cell autonomous effects on megakaryocyte lineage bias were documented using multipotential progenitor assays. These data provide the first physiological function of murine Blvrb in a non-redundant pathway of stress cytoprotection. Divergent effects on erythroid/megakaryocyte lineage speciation impute a novel redox-regulated mechanism for lineage partitioning.
Assuntos
Hematopoese , Megacariócitos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Animais , Biliverdina , Linhagem da Célula , Hematopoese/genética , Heme , Camundongos , Camundongos KnockoutRESUMO
INTRODUCTION: Antiplatelet therapy for neonates and infants is often extrapolated from the adult experience, based on limited observation of agonist-induced neonatal platelet hypoactivity and poor understanding of flow shear-mediated platelet activation. Therefore, thrombotic events due to device-associated disturbed flow are inadequately mitigated in critically ill neonates with indwelling umbilical catheters and infants receiving cardiovascular implants. METHODS: Whole blood (WB), platelet-rich plasma (PRP), and gel-filtered platelets (GFP) were prepared from umbilical cord and adult blood, and exposed to biochemical agonists or pathological shear stress of 70 dyne/cm2. We evaluated α-granule release, phosphatidylserine (PS) scrambling, and procoagulant response using P-selectin expression, Annexin V binding, and thrombin generation (PAS), respectively. Activation modulation due to depletion of intracellular and extracellular calcium, requisite second messengers, was also examined. RESULTS: Similar P-selectin expression was observed for sheared adult and cord platelets, with concordant inhibition due to intracellular and extracellular calcium depletion. Sheared cord platelet Annexin V binding and PAS activity was similar to adult values in GFP, but lower in PRP and WB. Annexin V on sheared cord platelets was calcium-independent, with PAS slightly reduced by intracellular calcium depletion. CONCLUSIONS: Increased PS activity on purified sheared cord platelets suggest that their intrinsic function under pathological flow conditions is suppressed by cell-cell or plasmatic components. Although secretory functions of adult and cord platelets retain comparable calcium-dependence, PS exposure in sheared cord platelets is uniquely calcium-independent and distinct from adults. Identification of calcium-regulated developmental disparities in shear-mediated platelet function may provide novel targets for age-specific antiplatelet therapy.