Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(10): e57032, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37650863

RESUMO

Bromodomain-containing protein 4 (BRD4) is overexpressed and functionally implicated in various myeloid malignancies. However, the role of BRD4 in normal hematopoiesis remains largely unknown. Here, utilizing an inducible Brd4 knockout mouse model, we find that deletion of Brd4 (Brd4Δ/Δ ) in the hematopoietic system impairs hematopoietic stem cell (HSC) self-renewal and differentiation, which associates with cell cycle arrest and senescence. ATAC-seq analysis shows increased chromatin accessibility in Brd4Δ/Δ hematopoietic stem/progenitor cells (HSC/HPCs). Genome-wide mapping with cleavage under target and release using nuclease (CUT&RUN) assays demonstrate that increased global enrichment of H3K122ac and H3K4me3 in Brd4Δ/Δ HSC/HPCs is associated with the upregulation of senescence-specific genes. Interestingly, Brd4 deletion increases clipped H3 (cH3) which correlates with the upregulation of senescence-specific genes and results in a higher frequency of senescent HSC/HPCs. Re-expression of BRD4 reduces cH3 levels and rescues the senescence rate in Brd4Δ/Δ HSC/HPCs. This study unveils an important role of BRD4 in HSC/HPC function by preventing H3 clipping and suppressing senescence gene expression.


Assuntos
Histonas , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Senescência Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Hematopoese
2.
J Cell Biochem ; 116(3): 351-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25290986

RESUMO

There is an urgent need to identify novel therapies for glioblastoma (GBM) as most therapies are ineffective. A first step in this process is to identify and validate targets for therapeutic intervention. Epigenetic modulators have emerged as attractive drug targets in several cancers including GBM. These epigenetic regulators affect gene expression without changing the DNA sequence. Recent studies suggest that epigenetic regulators interact with drivers of GBM cell and stem-like cell proliferation. These drivers include components of the Notch, Hedgehog, and Wingless (WNT) pathways. We highlight recent studies connecting epigenetic and signaling pathways in GBM. We also review systems and big data approaches for identifying patient specific therapies in GBM. Collectively, these studies will identify drug combinations that may be effective in GBM and other cancers.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Epigênese Genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Transdução de Sinais/genética , Metilação de DNA/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Front Cell Dev Biol ; 8: 576654, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015071

RESUMO

Hair cells (HCs) play crucial roles in perceiving sound, acceleration, and fluid motion. The tonotopic architecture of the sensory epithelium recognizes mechanical stimuli and convert them into electrical signals. The expression and regulation of the genes in the inner ear is very important to keep the sensory organ functional. Our study is the first to investigate the role of the epigenetic reader Brd4 in the mouse inner ear. We demonstrate that HC specific deletion of Brd4 in vivo in the mouse inner ear is sufficient to cause profound hearing loss (HL), degeneration of stereocilia, nerve fibers and HC loss postnatally in mouse; suggesting an important role in hearing function and maintenance.

4.
Nat Commun ; 10(1): 3028, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292434

RESUMO

Cerebellar neuronal progenitors undergo a series of divisions before irreversibly exiting the cell cycle and differentiating into neurons. Dysfunction of this process underlies many neurological diseases including ataxia and the most common pediatric brain tumor, medulloblastoma. To better define the pathways controlling the most abundant neuronal cells in the mammalian cerebellum, cerebellar granule cell progenitors (GCPs), we performed RNA-sequencing of GCPs exiting the cell cycle. Time-series modeling of GCP cell cycle exit identified downregulation of activity of the epigenetic reader protein Brd4. Brd4 binding to the Gli1 locus is controlled by Casein Kinase 1δ (CK1 δ)-dependent phosphorylation during GCP proliferation, and decreases during GCP cell cycle exit. Importantly, conditional deletion of Brd4 in vivo in the developing cerebellum induces cerebellar morphological deficits and ataxia. These studies define an essential role for Brd4 in cerebellar granule cell neurogenesis and are critical for designing clinical trials utilizing Brd4 inhibitors in neurological indications.


Assuntos
Ataxia Cerebelar/genética , Córtex Cerebelar/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Caseína Quinase Idelta , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Ataxia Cerebelar/patologia , Córtex Cerebelar/citologia , Córtex Cerebelar/patologia , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Proteínas Nucleares/genética , Fosforilação/fisiologia , Cultura Primária de Células , Fatores de Transcrição/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
5.
Nat Commun ; 9(1): 5315, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552330

RESUMO

Glioblastoma (GBM) is the most common primary adult brain tumor. Despite extensive efforts, the median survival for GBM patients is approximately 14 months. GBM therapy could benefit greatly from patient-specific targeted therapies that maximize treatment efficacy. Here we report a platform termed SynergySeq to identify drug combinations for the treatment of GBM by integrating information from The Cancer Genome Atlas (TCGA) and the Library of Integrated Network-Based Cellular Signatures (LINCS). We identify differentially expressed genes in GBM samples and devise a consensus gene expression signature for each compound using LINCS L1000 transcriptional profiling data. The SynergySeq platform computes disease discordance and drug concordance to identify combinations of FDA-approved drugs that induce a synergistic response in GBM. Collectively, our studies demonstrate that combining disease-specific gene expression signatures with LINCS small molecule perturbagen-response signatures can identify preclinical combinations for GBM, which can potentially be tested in humans.


Assuntos
Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Transcriptoma/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Conjuntos de Dados como Assunto , Combinação de Medicamentos , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Biblioteca Gênica , Redes Reguladoras de Genes , Humanos , Família Multigênica , Resultado do Tratamento , Estados Unidos , United States Food and Drug Administration/normas
6.
Cell Cycle ; 16(10): 940-946, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28296622

RESUMO

Cellular transitions are achieved by the concerted actions of regulated degradation pathways. In the case of the cell cycle, ubiquitin mediated degradation ensures unidirectional transition from one phase to another. For instance, turnover of the cell cycle regulator cyclin B1 occurs after metaphase to induce mitotic exit. To better understand pathways controlling cyclin B1 turnover, the N-terminal domain of cyclin B1 was fused to luciferase to generate an N-cyclin B1-luciferase protein that can be used as a reporter for protein turnover. Prior studies demonstrated that cell-based screens using this reporter identified small molecules inhibiting the ubiquitin ligase controlling cyclin B1-turnover. Our group adapted this approach for the G2-M regulator Wee1 where a Wee1-luciferase construct was used to identify selective small molecules inhibiting an upstream kinase that controls Wee1 turnover. In the present study we present a screening approach where cell cycle regulators are fused to luciferase and overexpressed with cDNAs to identify specific regulators of protein turnover. We overexpressed approximately 14,000 cDNAs with the N-cyclin B1-luciferase fusion protein and determined its steady-state level relative to other luciferase fusion proteins. We identified the known APC/C regulator Cdh1 and the F-box protein Fbxl15 as specific modulators of N-cyclin B1-luciferase steady-state levels and turnover. Collectively, our studies suggest that analyzing the steady-state levels of luciferase fusion proteins in parallel facilitates identification of specific regulators of protein turnover.


Assuntos
Caderinas/genética , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , Proteínas F-Box/genética , Antígenos CD , Ciclo Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Humanos , Luciferases/genética , Mitose/genética , Proteínas Nucleares/genética , Proteínas Tirosina Quinases/genética , Proteólise , Proteínas Recombinantes de Fusão/genética , Ubiquitina/genética
7.
Cell Rep ; 11(2): 249-60, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25843713

RESUMO

Although casein kinase 1δ (CK1δ) is at the center of multiple signaling pathways, its role in the expansion of CNS progenitor cells is unknown. Using mouse cerebellar granule cell progenitors (GCPs) as a model for brain neurogenesis, we demonstrate that the loss of CK1δ or treatment of GCPs with a highly selective small molecule inhibits GCP expansion. In contrast, CK1δ overexpression increases GCP proliferation. Thus, CK1δ appears to regulate GCP neurogenesis. CK1δ is targeted for proteolysis via the anaphase-promoting complex/cyclosome (APC/C(Cdh1)) ubiquitin ligase, and conditional deletion of the APC/C(Cdh1) activator Cdh1 in cerebellar GCPs results in higher levels of CK1δ. APC/C(Cdh1) also downregulates CK1δ during cell-cycle exit. Therefore, we conclude that APC/C(Cdh1) controls CK1δ levels to balance proliferation and cell-cycle exit in the developing CNS. Similar studies in medulloblastoma cells showed that CK1δ holds promise as a therapeutic target.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/biossíntese , Caseína Quinase Idelta/biossíntese , Proteínas Cdh1/biossíntese , Sistema Nervoso Central/crescimento & desenvolvimento , Neurogênese/genética , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Caseína Quinase Idelta/genética , Proteínas Cdh1/genética , Ciclo Celular/genética , Proliferação de Células/genética , Sistema Nervoso Central/metabolismo , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Humanos , Camundongos , Neurônios/metabolismo , Interferência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA